1
|
Kassey VB, Walle M, Egan J, Yeritsyan D, Beeram I, Kassey SP, Wu Y, Snyder BD, Rodriguez EK, Ackerman JL, Nazarian A. Quantitative 1H Magnetic Resonance Imaging on Normal and Pathologic Rat Bones by Solid-State 1H ZTE Sequence with Water and Fat Suppression. J Magn Reson Imaging 2024; 60:2423-2432. [PMID: 38526032 PMCID: PMC11422519 DOI: 10.1002/jmri.29361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Osteoporosis (OP) and osteomalacia (OM) are metabolic bone diseases characterized by mineral and matrix density changes. Quantitative bone matrix density differentiates OM from OP. MRI is a noninvasive and nonionizing imaging technique that can measure bone matrix density quantitatively in ex vivo and in vivo. PURPOSE To demonstrate water + fat suppressed 1H MRI to compute bone matrix density in ex vivo rat femurs in the preclinical model. STUDY TYPE Prospective. ANIMAL MODEL Fifteen skeletally mature female Sprague-Dawley rats, five per group (normal, ovariectomized (OVX), partially nephrectomized/vitamin D (Vit-D) deficient), 250-275 g, ∼15 weeks old. FIELD STRENGTH/SEQUENCE 7T, zero echo time sequence with water + fat (VAPOR) suppression capability, μCT imaging, and gravimetric measurements. ASSESSMENT Cortical and trabecular bone segments from normal and disease models were scanned in the same coil along with a dual calibration phantom for quantitative assessment of bone matrix density. STATISTICAL TESTS ANOVA and linear regression were used for data analysis, with P-values <0.05 statistically significant. RESULTS The MRI-derived three-density PEG pellet densities have a strong linear relationship with physical density measures (r2 = 0.99). The Vit-D group had the lowest bone matrix density for cortical bone (0.47 ± 0.16 g cm-3), whereas the OVX had the lowest bone matrix density for trabecular bone (0.26 ± 0.04 g cm-3). Gravimetry results confirmed these MRI-based observations for Vit-D cortical (0.51 ± 0.07 g cm-3) and OVX trabecular (0.26 ± 0.03 g cm-3) bone groups. DATA CONCLUSION Rat femur images were obtained using a modified pulse sequence and a custom-designed double-tuned (1H/31P) transmit-receive solenoid-coil on a 7T preclinical MRI scanner. Phantom experiments confirmed a strong linear relation between MRI-derived and physical density measures and quantitative bone matrix densities in rat femurs from normal, OVX, and Vit-D deficient/partially nephrectomized animals were computed. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Víctor B. Kassey
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Orthopaedic Surgery, Children’s Hospital, Boston, MA 02115, USA
- Athinoula Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Matthias Walle
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jonathan Egan
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Diana Yeritsyan
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Indeevar Beeram
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Sharon P. Kassey
- Athinoula Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Yaotang Wu
- Department of Orthopaedic Surgery, Children’s Hospital, Boston, MA 02115, USA
- Athinoula Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Brian D. Snyder
- Department of Orthopaedic Surgery, Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Edward K. Rodriguez
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jerome L. Ackerman
- Athinoula Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Orthopaedic Surgery, Children’s Hospital, Boston, MA 02115, USA
- Athinoula Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Liu F, Wang X, He Y, Han R, Wang T, Guo Y. Jaw osteoporosis: Challenges to oral health and emerging perspectives of treatment. Biomed Pharmacother 2024; 177:116995. [PMID: 38917761 DOI: 10.1016/j.biopha.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Osteoporosis is a prevalent bone metabolic disease that poses a significant challenge to global human health. Jaw osteoporosis, characterized by microstructural damage of the jaw resulting from various factors, is one of the common manifestations of this condition. Recent studies have demonstrated that jaw osteoporosis has multifaceted effects on oral health and can negatively impact conditions such as periodontitis, oral implantation, orthodontic treatment, and wound healing. However, there are still some limitations in the conventional treatment of osteoporosis. For instance, while bisphosphonates can enhance bone quality, they may also lead to osteonecrosis of the jaw, which poses a potential safety hazard in oral diagnosis and treatment. In recent years, considerable attention has been focused on improving the pathological condition of jaw osteoporosis. Treatment strategies such as gut microbial regulation, extracellular vesicles, molecular targeted therapy, herbal medicine, mechanical stimulation are expected to enhance efficacy and minimize adverse reactions. Therefore, understanding these effects and exploring novel treatments for jaw osteoporosis may provide new insights for oral health maintenance and disease treatment. This article reviews the impact of jaw osteoporosis on oral health and describes the limitations associated with current methods. It also discusses emerging perspectives on treatment, offering a comprehensive overview of the challenges and future directions in managing jaw osteoporosis.
Collapse
Affiliation(s)
- Fushuang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yikai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
An J, Shi X, Zhang J, Qi L, Xue W, Nie X, Yun Z, Zhang P, Liu Q. Dual aldehyde cross-linked hyaluronic acid hydrogels loaded with PRP and NGF biofunctionalized PEEK interfaces to enhance osteogenesis and vascularization. Mater Today Bio 2024; 24:100928. [PMID: 38179432 PMCID: PMC10765491 DOI: 10.1016/j.mtbio.2023.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
Polyetheretherketone (PEEK) material has become a potential bone replacement material due to its elastic modulus, which is close to that of human bone, and stable chemical properties. However, its biological inertness has hindered its clinical application. To improve the biological inertia of PEEK material, a hyaluronic acid (HA) hydrogel coating loaded with platelet-rich plasma (PRP) and nerve growth factor (NGF) was constructed on the surface of PEEK material in this study. After the hybrid hydrogel coating was constructed, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), degradation tests, and enzyme-linked immunosorbent assays (ELISAs) were used to evaluate its characteristics and biological properties. The osteogenic and angiogenic potentials were also investigated in vitro and in vivo. Our results showed that the HA hydrogel loaded with RPP and NGF on the PEEK surface degraded slowly and could sustainably release various growth factors, including NGF. The results of in vitro tests showed that the hybrid hydrogel on the surface of PEEK effectively promoted osteogenesis and angiogenesis. The in vivo experiment also confirmed that the PEEK surface hydrogel could promote osseointegration of the implant and the integration of new bone and neovascularization. Our results suggest that the cross-linked hyaluronic acid hydrogel loaded with PRP and NGF can significantly improve the biological inertia of PEEK material, endowing PEEK material with good osteogenic and angiogenic ability.
Collapse
Affiliation(s)
- Junyan An
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
- The Third Hospital of Jilin University, Department of Neurosurgery, Changchun, 130031, China
| | - Xiaotong Shi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- The First Hospital of Jilin University, Department of Orthopedics, Changchun, 130021, China
| | - Jun Zhang
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| | - Le Qi
- The Yunlong Orthopedic Hospital of Baotou, Department of Orthopedics, Baotou, 014010, China
| | - Wu Xue
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| | - Xinyu Nie
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| | - Zhihe Yun
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Qinyi Liu
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| |
Collapse
|
4
|
Rizk M, Niederau C, Florea A, Kiessling F, Morgenroth A, Mottaghy FM, Schneider RK, Wolf M, Craveiro RB. Periodontal ligament and alveolar bone remodeling during long orthodontic tooth movement analyzed by a novel user-independent 3D-methodology. Sci Rep 2023; 13:19919. [PMID: 37964111 PMCID: PMC10646115 DOI: 10.1038/s41598-023-47386-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023] Open
Abstract
The structural process of bone and periodontal ligament (PDL) remodeling during long-term orthodontic tooth movement (OTM) has not been satisfactorily described yet. Although the mechanism of bone changes in the directly affected alveolar bone has been deeply investigated, detailed knowledge about specific mechanism of PDL remodeling and its interaction with alveolar bone during OTM is missing. This work aims to provide an accurate and user-independent analysis of the alveolar bone and PDL remodeling following a prolonged OTM treatment in mice. Orthodontic forces were applied using a Ni-Ti coil-spring in a split-mouth mice model. After 5 weeks both sides of maxillae were scanned by high-resolution micro-CT. Following a precise tooth movement estimation, an extensive 3D analysis of the alveolar bone adjacent to the first molar were performed to estimate the morphological and compositional parameters. Additionally, changes of PDL were characterized by using a novel 3D model approach. Bone loss and thinning, higher connectivity as well as lower bone mineral density were found in both studied regions. Also, a non-uniformly widened PDL with increased thickness was observed. The extended and novel methodology in this study provides a comprehensive insight about the alveolar bone and PDL remodeling process after a long-duration OTM.
Collapse
Affiliation(s)
- Marta Rizk
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Christian Niederau
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Alexandru Florea
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Academic Hospital Maastricht, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic Aachen, RWTH Aachen University, Aachen, Germany
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Academic Hospital Maastricht, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Rebekka K Schneider
- Institute of Cell and Tumor Biology, RWTH Aachen University, Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Shi X, Wang Z, Guo M, Wang Y, Bi Z, Li D, Zhang P, Liu J. PRP coating on different modified surfaces promoting the osteointegration of polyetheretherketone implant. Front Bioeng Biotechnol 2023; 11:1283526. [PMID: 38026857 PMCID: PMC10655129 DOI: 10.3389/fbioe.2023.1283526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Polyetheretherketone (PEEK) material implants have been applied more and more clinically recently. In order to increase the osteogenic activity of PEEK material, the microstructure change of the material surface and the construction of functional microcoatings have become a hot research topic. This study investigated the ability of PEEK surfaces modified by different methods to carry Platelet-rich plasma (PRP) and the osteogenic ability of different PEEK microstructures after carrying PRP in vivo/in vitro. Methods: In this study, PEEK surfaces were modified by sulfuric acid, gaseous sulfur trioxide and sandpaper. Next, PRP from SD rats was prepared and incubated on PEEK material with different surface microstructures. Lactate dehydrogenase test, scanning electron microscope and Elisa assay was used to evaluate adhesion efficiency of PRP. Then in vitro tests such as CCK-8, ALP staining, ARS staining and RT-qPCR et al were used to further evaluate osteogenesis ability of the PRP coating on PEEK surface. Finally, The tibia defects of SD rats were established, and the new bone was evaluated by Micro-CT, HE staining, and immunofluorescence staining. Results: The sandpaper-polished PEEK with the strongest PRP carrying capacity showed the best osteogenesis. Our study found that the modified PEEK surface with PRP coating has excellent osteogenic ability and provided the basis for the interface selection of PRP for the further application of PEEK materials. Discussion: Among the three PEEK modified surfaces, due to the most PRP carrying and the strongest osteogenic ability in vitro/vivo, the frosted surface was considered to be the most suitable surface for the preparation of PRP coating.
Collapse
Affiliation(s)
- Xiaotong Shi
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiguo Bi
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| | - Dongsong Li
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jianguo Liu
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| |
Collapse
|
6
|
Wang F, Ye Y, Zhang Z, Teng W, Sun H, Chai X, Zhou X, Chen J, Mou H, Eloy Y, Jin X, Chen L, Shao Z, Wu Y, Shen Y, Liu A, Lin P, Wang J, Yu X, Ye Z. PDGFR in PDGF-BB/PDGFR Signaling Pathway Does Orchestrates Osteogenesis in a Temporal Manner. RESEARCH (WASHINGTON, D.C.) 2023; 6:0086. [PMID: 37223474 PMCID: PMC10202377 DOI: 10.34133/research.0086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/13/2023] [Indexed: 12/01/2023]
Abstract
Platelet-derived growth factor-BB (PDGF-BB)/platelet-derived growth factor receptor-β (PDGFR-β) pathway is conventionally considered as an important pathway to promote osteogenesis; however, recent study suggested its role during osteogenesis to be controversial. Regarding the differential functions of this pathway during 3 stages of bone healing, we hypothesized that temporal inhibition of PDGF-BB/PDGFR-β pathway could shift the proliferation/differentiation balance of skeletal stem and progenitor cells, toward osteogenic lineage, which leads to improved bone regeneration. We first validated that inhibition of PDGFR-β at late stage of osteogenic induction effectively enhanced differentiation toward osteoblasts. This effect was also replicated in vivo by showing accelerated bone formation when block PDGFR-β pathway at late stage of critical bone defect healing mediated using biomaterials. Further, we found that such PDGFR-β inhibitor-initiated bone healing was also effective in the absence of scaffold implantation when administrated intraperitoneally. Mechanistically, timely inhibition of PDGFR-β blocked extracellular regulated protein kinase 1/2 pathway, which shift proliferation/differentiation balance of skeletal stem and progenitor cell to osteogenic lineage by upregulating osteogenesis-related products of Smad to induce osteogenesis. This study offered updated understanding of the use of PDGFR-β pathway and provides new insight routes of action and novel therapeutic methods in the field of bone repair.
Collapse
Affiliation(s)
- Fangqian Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Yuxiao Ye
- School of Material Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - Zengjie Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Wangsiyuan Teng
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Hangxiang Sun
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Xupeng Chai
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Xingzhi Zhou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Jiayu Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Haochen Mou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Yinwang Eloy
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Xiaoqiang Jin
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Liang Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Zhenxuan Shao
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Yan Wu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Yue Shen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - An Liu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Peng Lin
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Jianwei Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Xiaohua Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| |
Collapse
|
7
|
Dynamic changes in tooth displacement and bone morphometry induced by orthodontic force. Sci Rep 2022; 12:13672. [PMID: 35953700 PMCID: PMC9372182 DOI: 10.1038/s41598-022-17412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022] Open
Abstract
This study used a novel 3D analysis to longitudinally evaluate orthodontic tooth movement (OTM) and bone morphometry. Twelve-week-old male Wistar rats were subjected to OTM by applying a constant orthodontic force (OF) of 25cN between one of the upper first molars and a mini-screw. In vivo micro-CTs were taken before and after 10, 17, 24 and 31 days of force application, and superimposed by a novel and rigid voxel-based registration method. Then the tooth and alveolar bone segment at different time points became comparable in the same coordinate system, which facilitated the analysis of their dynamic changes in 3D. By comparison between time points and between OF and no OF sides, this study showed that the OTM rate was not constant through time, but conformed to a ‘V’ shape changing pattern. Besides, OF induced displacement of both loaded and unloaded teeth, and the latter mirrored the former in a delayed manner. In addition, bone morphometric changes synchronized with OTM rate changes, implying that a higher OTM rate was concomitant with more alveolar bone loss. The pressure and tension areas might not be in two opposite sides, but actually adjacent and connected. These findings might provide instructive evidence for both clinical, translational and basic research in orthodontics.
Collapse
|