1
|
Daneshian Y, Lewallen EA, Badreldin AA, Dietz AB, Stein GS, Cool SM, Ryoo HM, Cho YD, van Wijnen AJ. Fundamentals and Translational Applications of Stem Cells and Biomaterials in Dental, Oral and Craniofacial Regenerative Medicine. Crit Rev Eukaryot Gene Expr 2024; 34:37-60. [PMID: 38912962 DOI: 10.1615/critreveukaryotgeneexpr.2024053036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Regenerative dental medicine continuously expands to improve treatments for prevalent clinical problems in dental and oral medicine. Stem cell based translational opportunities include regenerative therapies for tooth restoration, root canal therapy, and inflammatory processes (e.g., periodontitis). The potential of regenerative approaches relies on the biological properties of dental stem cells. These and other multipotent somatic mesenchymal stem cell (MSC) types can in principle be applied as either autologous or allogeneic sources in dental procedures. Dental stem cells have distinct developmental origins and biological markers that determine their translational utility. Dental regenerative medicine is supported by mechanistic knowledge of the molecular pathways that regulate dental stem cell growth and differentiation. Cell fate determination and lineage progression of dental stem cells is regulated by multiple cell signaling pathways (e.g., WNTs, BMPs) and epigenetic mechanisms, including DNA modifications, histone modifications, and non-coding RNAs (e.g., miRNAs and lncRNAs). This review also considers a broad range of novel approaches in which stem cells are applied in combination with biopolymers, ceramics, and composite materials, as well as small molecules (agonistic or anti-agonistic ligands) and natural compounds. Materials that mimic the microenvironment of the stem cell niche are also presented. Promising concepts in bone and dental tissue engineering continue to drive innovation in dental and non-dental restorative procedures.
Collapse
Affiliation(s)
- Yasaman Daneshian
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
| | - Eric A Lewallen
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | - Amr A Badreldin
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT 05405; University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Simon M Cool
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Hyun-Mo Ryoo
- School of Dentistry, Seoul National University, 28 Yeonkun-dong, Chongro-gu Seoul, 110-749, Republic of Korea
| | - Young Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, 101 Daehak‑no, Jongno‑gu, Seoul 03080, Republic of Korea
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
2
|
Silva G, Babo PS, Azevedo J, Gomes ME, Viegas C, Requicha JF. Evaluation of Feline Permanent Canine Tooth Mineral Density Using Micro-Computed Tomography. Vet Sci 2023; 10:vetsci10030217. [PMID: 36977256 PMCID: PMC10058009 DOI: 10.3390/vetsci10030217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The tooth is made up of three mineralized tissues, enamel, dentin, and cementum, which surround a non-mineralized tissue called the dental pulp. Micro-computed tomography (mCT) is an imaging technology based on X-rays that allows non-invasive visualization of objects at a microscopic scale, according to their radiopacity and in three dimensions (3D). Likewise, it allows the subsequent execution of morphological and quantitative analysis of the objects, such as, for example, the determination of the relative mineral density (MD). The present work aimed to describe the MD of feline teeth using mCT. The studied sample consisted of four European Shorthair cats, from which nine canine teeth were extracted per medical indication. These teeth were evaluated through dental radiography before and after their extraction. Using mCT and the CTAn software, the values of the relative mineral density of the root of each tooth and of specific segments corresponding to the coronal, middle, and apical thirds of the root were determined. Mean MD of root tissues was 1.374 ± 0040 g·cm−3, and of hard root, tissues was 1.402 ± 0.035 g·cm−3. Through mCT, it was possible to determine the mean MD values of feline canine teeth. The study of MD could become an ancillary method for the diagnosis and characterization of dental pathology.
Collapse
Affiliation(s)
- Graça Silva
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Pedro S Babo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, 4805-017 Guimarães, Portugal
| | - Jorge Azevedo
- Department of Animal Science, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, 4805-017 Guimarães, Portugal
| | - Carlos Viegas
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - João F Requicha
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| |
Collapse
|
3
|
Therapeutic and Metagenomic Potential of the Biomolecular Therapies against Periodontitis and the Oral Microbiome: Current Evidence and Future Perspectives. Int J Mol Sci 2022; 23:ijms232213708. [PMID: 36430182 PMCID: PMC9693164 DOI: 10.3390/ijms232213708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
The principles of periodontal therapy are based on the control of microbial pathogens and host factors that contribute to biofilm dysbiosis, with the aim of modulating the progression of periodontitis and periodontal tissue destruction. It is currently known how differently each individual responds to periodontal treatment, depending on both the bacterial subtypes that make up the dysbiotic biofilm and interindividual variations in the host inflammatory response. This has allowed the current variety of approaches for the management of periodontitis to be updated by defining the goals of target strategies, which consist of reducing the periodontopathogenic microbial flora and/or modulating the host-mediated response. Therefore, this review aims to update the current variety of approaches for the management of periodontitis based on recent target therapies. Recently, encouraging results have been obtained from several studies exploring the effects of some targeted therapies in the medium- and long-term. Among the most promising target therapies analyzed and explored in this review include: cell-based periodontal regeneration, mediators against bone resorption, emdogain (EMD), platelet-rich plasma, and growth factors. The reviewed evidence supports the hypothesis that the therapeutic combination of epigenetic modifications of periodontal tissues, interacting with the dysbiotic biofilm, is a key step in significantly reducing the development and progression of disease in periodontal patients and improving the therapeutic response of periodontal patients. However, although studies indicate promising results, these need to be further expanded and studied to truly realize the benefits that targeted therapies could bring in the treatment of periodontitis.
Collapse
|