1
|
Wang X, Zhong S, Ma D, Liu C, Liu Y, Zhao Y, Bai S. Polyetheretherketone split post and core for restoration of multirooted molar with insufficient dental tissue remnants by digital techniques: a case report and 3-year follow up. BMC Oral Health 2024; 24:904. [PMID: 39112986 PMCID: PMC11304810 DOI: 10.1186/s12903-024-04666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/24/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Multi-rooted teeth with extensive dental defects often face challenges in stability and biomechanical failure. High-performance polymer PEEK materials, with properties closer to dentin, show promise in reducing stress concentration and preserving tooth structure. This report aimed to explore the use of a highly retentive polyetheretherketone (PEEK) for manufacturing custom-made split post and core for the restoration of grossly destroyed endodontically treated molars. CLINICAL CONSIDERATIONS A 40-year-old female patient presented with complaints of loss of tooth substance in the posterior mandibular tooth. This case involved the digital design and fabrication of PEEK split post and core to restore multirooted molar with insufficient dental tissue remnants. The restorations were evaluated over a 3-year follow-up using the World Federation criteria (FDI). The restoration was clinically evaluated through intraoral examination, radiographic assessment, and subjective patient satisfaction, and was deemed clinically good according to FDI criteria. CONCLUSION The outstanding mechanical properties of PEEK, coupled with the structure of the split post, provide an effective treatment option for weakened multirooted teeth. Simultaneously, the restoration configuration effectively addressed the challenge of varying postinsertion directions, and the interlocking mechanism between the primary and auxiliary posts enhanced the stability of the post and core.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Sheng Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Dan Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Chen Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Yuchen Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Yimin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Shizhu Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
2
|
Liang M, Zeyong L, Li Y, Chen Q, Meng X. Biomechanical impact of labiolingual diameter on endodontically treated anterior teeth with crown restoration under occlusal loading. J Appl Oral Sci 2024; 32:e20230439. [PMID: 38896638 PMCID: PMC11182641 DOI: 10.1590/1678-7757-2023-0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/27/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE To evaluate the effect of the labiolingual diameter and construction of an endodontically treated (ET) anterior tooth with crown restoration on stress distribution and biomechanical safety under occlusal loading. METHODOLOGY Three-dimensional finite element models were generated for maxillary central incisors with all-ceramic crown restorations. The labiolingual diameters of the tooth, defined as the horizontal distance between the protrusion of the labial and lingual surfaces, were changed as follows: (D1) 6.85 mm, (D2) 6.35 mm, and (D3) 5.85 mm. The model was constructed as follows: (S0) vital pulp tooth; (S1) ET tooth; (S2) ET tooth with a 2 mm ferrule, restored with a fiber post and composite resin core; (S3) ET tooth without a ferrule, restored with a fiber post and composite resin core. A total of 12 models were developed. In total, two force loads (100 N) were applied to the crown's incisal edge and palatal surface at a 45° oblique angle to the longitudinal axis of the teeth. The Von Mises stress distribution and maximum stress of the models were analyzed. RESULTS Regardless of the loading location, stress concentration and maximum stress (34.07~66.78MPa) in all models occurred in the labial cervical 1/3 of each root. Both labiolingual diameter and construction influenced the maximum stress of the residual tooth tissue, with the impact of the labiolingual diameter being greater. A reduction in labiolingual diameter led to increased maximum stress throughout the tooth. The ferrule reduced the maximum stress of the core of S2 models (7.15~10.69 MPa), which is lower compared with that of S3 models (19.45~43.67 MPa). CONCLUSION The labiolingual diameter exerts a greater impact on the biomechanical characteristics of ET anterior teeth with crown restoration, surpassing the influence of the construction. The ferrule can reduce the maximum stress of the core and maintain the uniformity of stress distribution.
Collapse
Affiliation(s)
- Miao Liang
- Nanjing University, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Department of General Dentistry, Nanjing, 210008, China
| | - Lamu Zeyong
- Nanjing University, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Department of Prosthodontics, Nanjing, 210008, China
| | - Yongheng Li
- Southeast University, School of Biological Science & Medical Engineering, Biomechanics Laboratory, Nanjing, 210008, China
| | - Qiang Chen
- Southeast University, School of Biological Science & Medical Engineering, Biomechanics Laboratory, Nanjing, 210008, China
| | - Xiangfeng Meng
- Nanjing University, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Department of Prosthodontic Technology, Nanjing, 210008, China
| |
Collapse
|
3
|
Chen S, Hong X, Ye Z, Wu M, Chen L, Wu L, Wang Y, Chen Y, Wu J, Wang J, Zhang Q, Wu Y, Sun X, Ding X, Huang S, Zhao S. The effect of root canal treatment and post-crown restorations on stress distribution in teeth with periapical periodontitis: a finite element analysis. BMC Oral Health 2023; 23:973. [PMID: 38057755 PMCID: PMC10701996 DOI: 10.1186/s12903-023-03612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
AIM To evaluate the effects of root canal treatment (RCT) and post-crown restoration on stress distribution in teeth with periapical bone defects using finite element analysis. METHODOLOGY Finite element models of mandibular second premolars and those with periapical bone defects (spherical defects with diameters of 5, 10, 15, and 20 mm) were created using digital model design software. The corresponding RCT and post-crown restoration models were constructed based on the different sizes of periapical bone defect models. The von Mises stress and tooth displacement distributions were comprehensively analyzed in each model. RESULTS Overall analysis of the models: RCT significantly increased the maximum von Mises stresses in teeth with periapical bone defects, while post-crown restoration greatly reduced the maximum von Mises stresses. RCT and post-crown restoration slightly reduced tooth displacement in the affected tooth. Internal analysis of tooth: RCT dramatically increased the maximum von Mises stress in all regions of the tooth, with the most pronounced increase in the coronal surface region. The post-crown restoration balances the internal stresses of the tooth and is most effective in periapical bone defect - 20-mm model. RCT and post-crown restoration slightly reduced the tooth displacement in all regions of the affected tooth. CONCLUSIONS Root canal treatment seemed not to improve the biomechanical state of teeth with periapical bone defects. In contrast, post-crown restoration might effectively balance the stress concentrations caused by periapical bone defects, particularly extensive ones.
Collapse
Affiliation(s)
- ShuoMin Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, West Xueyuan Road, Lucheng District, Wenzhou, PR China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - XinHua Hong
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, West Xueyuan Road, Lucheng District, Wenzhou, PR China
| | - ZhangYan Ye
- Department of Stomatology, Pingyang Hospital Affiliated of Wenzhou Medical University, Wenzhou, China
| | - MengHan Wu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, West Xueyuan Road, Lucheng District, Wenzhou, PR China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Liang Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, West Xueyuan Road, Lucheng District, Wenzhou, PR China
| | - LinMei Wu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, West Xueyuan Road, Lucheng District, Wenzhou, PR China
| | - Yilin Wang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, West Xueyuan Road, Lucheng District, Wenzhou, PR China
| | - YuGe Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, West Xueyuan Road, Lucheng District, Wenzhou, PR China
- Department of Dentistry, University of Alberta, Edmonton, Canada
| | - JiaYu Wu
- School of Medicine, Jiujiang University, Jiujiang, China
| | - Jun Wang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, West Xueyuan Road, Lucheng District, Wenzhou, PR China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - QinHui Zhang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, West Xueyuan Road, Lucheng District, Wenzhou, PR China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - YuTian Wu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, West Xueyuan Road, Lucheng District, Wenzhou, PR China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - XiaoYu Sun
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, West Xueyuan Road, Lucheng District, Wenzhou, PR China
- Department of Periodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xi Ding
- Department of Stomatology, the First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, PR China.
| | - ShengBin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, West Xueyuan Road, Lucheng District, Wenzhou, PR China.
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.
| | - ShuFan Zhao
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, West Xueyuan Road, Lucheng District, Wenzhou, PR China.
- Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, West Xueyuan Road, Lucheng District, Wenzhou, PR China.
| |
Collapse
|
4
|
Gong Q, Huang L, Luo J, Zhang Y, Meng Q, Quan J, Tong Z. The practicability of different preparation of mandibular molar restored by modified endocrown with intracanal extension: Computational analysis using finite element models. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107178. [PMID: 36242865 DOI: 10.1016/j.cmpb.2022.107178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Post-core-crown (PCC) and endocrown are two common restorative methods for severely damaged molars, but exhibit disadvantages. This study aimed to explore the practicability of modified endocrown with a 2 mm intracanal extension (MED) to restore defective teeth using finite element analysis (FEA). METHODS Five groups of numerical models of mandibular molars restored by three MEDs, a PCC, and a routine endocrown after root canal treatment were devised by FEA software. We constructed 4 mm, 3 mm, and 2 mm thickness of MED restorations to restore mandibular molars that were prepared to 1 mm, 2 mm, and 3 mm from the cemento-enamel junction (CEJ). Furthermore, PCC and routine endocrown were used to compare the stress distribution with MED. Lithium disilicate glass-ceramics (EMAX) and resin nanoceramics (LU) were considered restorative materials, and a vertical load of 600 N and an oblique load of 200 N were applied to the restorations. RESULTS In three MEDs by LU, 2 mm thickness of restoration generated the highest stress on prepared teeth, while the thickness of EMAX did not significantly influence the stress value. MED by LU generated higher stress around the CEJ, and reduced the stress on the middle and lower root compared to MEDs by EMAX, PCC by EMAX, and PCC by LU. MED by EMAX caused lower stress around the CEJ, and generated higher stress in the chamber walls after extended root canals compared with MED by LU, endocrowns by LU, and endocrowns by EMAX. There was an evident stress concentration at the last but one layer, which was a thin area of the tooth root in all restorative models. CONCLUSIONS The use of modified endocrown may be considered an effective restorative method to restore defective mandibular molar, but suitable restorative material must be selected based on the tooth preparation method and deficiencies in the tooth structure.
Collapse
Affiliation(s)
- Qimei Gong
- Hosiptal of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Luo Huang
- Hosiptal of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junpan Luo
- Hosiptal of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuejiao Zhang
- Hosiptal of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qingzhen Meng
- Hosiptal of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingjing Quan
- Hosiptal of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhongchun Tong
- Hosiptal of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|