1
|
Huang T, Jia J, Zhu C, Tian J, Zhang S, Yang X, Lei B, Li Y. A novel mussel-inspired desensitizer based on radial mesoporous bioactive nanoglass for the treatment of dentin exposure: An in vitro study. J Mech Behav Biomed Mater 2024; 152:106420. [PMID: 38310812 DOI: 10.1016/j.jmbbm.2024.106420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
OBJECTIVES The dentin exposure always leads to dentin hypersensitivity and the acid-resistant/abrasion-resistant stability of current therapeutic approaches remain unsatisfatory. Inspired by the excellent self-polymerization/adherence activity of mussels and the superior mineralization ability of bioactive glass, a novel radial mesoporous bioactive nanoglass coated with polydopamine (RMBG@PDA) was developed for prevention and management of dentin hypersensitivity. METHODS Radial mesoporous bioactive nanoglass (RMBG) was synthesized by the sol-gel process combined with the cetylpyridine bromide template self-assembly technique. RMBG@PDA was synthesized by a self-polymerization process involving dopamine and RMBG in an alkaline environment. Then, the nanoscale morphology, chemical structure, crystalline phase and Zeta potential of RMBG and RMBG@PDA were characterized. Subsequently, the ion release ability, bioactivity, and cytotoxicity of RMBG and RMBG@PDA in vitro were investigated. Moreover, an in vitro experimental model of dentin hypersensitivity was constructed to evaluate the effectiveness of RMBG@PDA on dentinal tubule occlusion, including resistances against acid and abrasion. Finally, the Young's modulus and nanohardness of acid-etched dentin were also detected after RMBG@PDA treatment. RESULTS RMBG@PDA showed a typical nanoscale morphology and noncrystalline structure. The use of RMBG@PDA on the dentin surface could effectively occlude dentinal tubules, reduce dentin permeability and achieve excellent acid- and abrasion-resistant stability. Furthermore, RMBG@PDA with excellent cytocompatibility held the capability to recover the Young's modulus and nanohardness of acid-etched dentin. CONCLUSION The application of RMBG@PDA with superior dentin tubule occlusion ability and acid/abrasion-resistant stability can provide a therapeutic strategy for the prevention and the management of dentin hypersensitivity.
Collapse
Affiliation(s)
- Tianjia Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jieyong Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Changze Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jing Tian
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Shiyi Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Xiaoxi Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Yuncong Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|