1
|
Gould ML, Downes NJ, Woolley AG, Hussaini HM, Ratnayake JT, Ali MA, Friedlander LT, Cooper PR. Harnessing the Regenerative Potential of Purified Bovine Dental Pulp and Dentin Extracellular Matrices in a Chitosan/Alginate Hydrogel. Macromol Biosci 2024; 24:e2400254. [PMID: 38938070 DOI: 10.1002/mabi.202400254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Indexed: 06/29/2024]
Abstract
When a tooth is diseased or damaged through caries, bioactive molecules are liberated from the pulp and dentin as part of the natural response to injury and these are key molecules for stimulating stem cell responses for tissue repair. Incorporation of these extracellular-matrix (ECM)-derived molecules into a hydrogel model can mimic in vivo conditions to enable dentin-pulp complex regeneration. Here, a chitosan/alginate (C/A) hydrogel is developed to sequester bovine ECM extracts. Human dental pulp cells (hDPCs) are cultured with these constructs and proliferation and cytotoxicity assays confirm that these C/A hydrogels are bioactive. Sequential z-axis fluorescent imaging visualizes hDPCs protruding into the hydrogel as it degraded. Alizarin red S staining shows that hDPCs cultured with the hydrogels display increased calcium-ion deposition, with dentin ECM stimulating the highest levels. Alkaline phosphatase activity is increased, as is expression of transforming growth factor-beta as demonstrated using immunocytochemistry. Directional analysis following phase contrast kinetic image capture demonstrates that both dentin and pulp ECM molecules act as chemoattractants for hDPCs. Data from this study demonstrate that purified ECM from dental pulp and dentin when delivered in a C/A hydrogel stimulates dental tissue repair processes in vitro.
Collapse
Affiliation(s)
- Maree L Gould
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Nerida J Downes
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Adele G Woolley
- Maurice Wilkins Centre for Biodiscovery, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Haizal M Hussaini
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
- Faculty of Dental Medicine, University of Airlangga, Surabaya, 60132, Indonesia
| | - Jithendra T Ratnayake
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Mohammad Azam Ali
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Lara T Friedlander
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Paul R Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
2
|
Agrawal A, K. Varghese R, Gupta NK, Choubey N, Dubey A, Priya S. In-vivo analysis of visible light cure calcium hydroxide, mineral trioxide aggregate and platelet-rich fibrin with and without laser therapy for direct pulp capping. Bioinformation 2024; 20:1111-1115. [PMID: 39917214 PMCID: PMC11795494 DOI: 10.6026/9732063002001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 02/09/2025] Open
Abstract
The clinical and radiographic outcomes of direct pulp capping using visible light cure calcium hydroxide, Mineral Trioxide Aggregate, and Platelet-Rich Fibrin, with and without pre-treatment with a low-level diode laser is of interest to dentist. One hundred and twenty patients (18-48 years) with accidental minimal pulp exposures less than 1 mm2 were randomized into two primary groups: laser pre-treatment and no laser pre-treatment, each further divided into three sub-groups based on the capping material. Clinical and radiographic assessments were conducted at 7th day, 1st, 6th and 12th months. The combination of low-level diode laser and mineral trioxide aggregate with platelet-rich fibrin demonstrated superior clinical outcomes compared to other groups. Radiographic analysis showed significant differences in dentin bridge thickness among groups. While all tested materials exhibited promising results, further research is necessary to optimize treatment protocols and ensure long-term clinical success with a specific focus on dentin bridge formation and the potential influence of laser pre-treatment.
Collapse
Affiliation(s)
- Aditee Agrawal
- Department of Conservative Dentistry & Endodontics, New Horizon Dental College and Research Institute, Sakri, Bilaspur, Chhattisgarh - 495001, India
| | - Rana K. Varghese
- Department of Conservative Dentistry & Endodontics, New Horizon Dental College and Research Institute, Sakri, Bilaspur, Chhattisgarh - 495001, India
| | - Naveen Kumar Gupta
- Department of Conservative Dentistry & Endodontics, New Horizon Dental College and Research Institute, Sakri, Bilaspur, Chhattisgarh - 495001, India
| | - Nishant Choubey
- Department of Oral and Maxillofacial Prosthodontics and Implantology, New Horizon Dental College and Research Institute, Sakri, Bilaspur, Chhattisgarh - 495001, India
| | - Astha Dubey
- Department of Conservative Dentistry & Endodontics, New Horizon Dental College and Research Institute, Sakri, Bilaspur, Chhattisgarh - 495001, India
| | - Swati Priya
- Department of Conservative Dentistry & Endodontics, New Horizon Dental College and Research Institute, Sakri, Bilaspur, Chhattisgarh - 495001, India
| |
Collapse
|
3
|
Islam MRR, Islam R, Liu Y, Toida Y, Yoshida Y, Sano H, Ahmed HMA, Tomokiyo A. Biological evaluation of novel phosphorylated pullulan-based calcium hydroxide formulations as direct pulp capping materials: An in vivo study on a rat model. Int Endod J 2024; 57:1247-1263. [PMID: 38780351 DOI: 10.1111/iej.14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/05/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
AIM Calcium hydroxide (CH) has been considered as a direct pulp capping materials (DPC) for the last decades despite having some limitations. Phosphorylate pullulan (PPL) incorporated with CH (CHPPL) is a novel biomaterial that was introduced as a promising DPC material. Thus, the aim of the study was to evaluate the inflammatory response and mineralized tissue formation (MTF) ability of PPL-based CH formulations on rat molars after DPC. METHODOLOGY This study consisted of six groups: CH with 1% PPL (CHPPL-1); 3% PPL (CHPPL-3); 5% PPL (CHPPL-5); Dycal and NEX MTA Cement (N-MTA) as the positive control, and no capping materials (NC). One hundred twenty maxillary first molar cavities were prepared on Wistar rats. After capping, all the cavities were restored with 4-META/MMA-TBB resin and pulpal responses were evaluated at days 1, 7, and 28. Kruskal-Wallis followed by Mann-Whitney U-test was performed with a significance level of 0.05. Immunohistochemical expression of IL-6, Nestin, and DMP-1 was observed. RESULTS At day 1, CHPPL-1, N-MTA, and Dycal exhibited no to mild inflammation, whilst CHPPL-3, CHPPL-5, and NC showed mild to moderate inflammation, and the results were significantly different (p < .05). At day 7, mild to moderate inflammation was observed in CHPPL-1, N-MTA, and Dycal, whereas CHPPL-3, CHPPL-5, and NC exhibited moderate to severe inflammation. Significant differences were observed between CHPPL-1 and N-MTA with NC (p < .05), CHPPL-1 and CHPPL-3 with CHPPL-5 and Dycal (p < .05), and CHPPL-3 with N-MTA (p < .05). A thin layer of mineralized tissue formation (MTF) was observed in all groups. At day 28, CHPPL-1, Dycal, and N-MTA showed no to mild inflammation, whilst CHPPL-3, CHPPL-5, and NC exhibited mild to severe inflammation, and statistically significant difference was detected (p < .05). CHPPL-1, Dycal, and N-MTA exhibited continuous MTF, whilst CHPPL-3, CHPPL-5, and NC had thicker and interrupted MTF. Significant differences were observed between CHPPL-1, CHPPL-3, and N-MTA with NC group (p < .05). Variable expressions of IL-6, Nestin, and DMP-1 indicated differences in the materials' impact on odontoblast-like cell formation and tissue mineralization. CONCLUSIONS These findings suggest that CHPPL-1 has the potential to minimize pulpal inflammation and promote MTF and had similar efficacy as MTA cement.
Collapse
Affiliation(s)
- Md Refat Readul Islam
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Rafiqul Islam
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yunqing Liu
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yu Toida
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuhiro Yoshida
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hidehiko Sano
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hany Mohamed Aly Ahmed
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Atsushi Tomokiyo
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Wang X, Chen Q, Li J, Tian W, Liu Z, Chen T. Recent adavances of functional modules for tooth regeneration. J Mater Chem B 2024; 12:7497-7518. [PMID: 39021127 DOI: 10.1039/d4tb01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Dental diseases, such as dental caries and periodontal disorders, constitute a major global health challenge, affecting millions worldwide and often resulting in tooth loss. Traditional dental treatments, though beneficial, typically cannot fully restore the natural functions and structures of teeth. This limitation has prompted growing interest in innovative strategies for tooth regeneration methods. Among these, the use of dental stem cells to generate functional tooth modules represents an emerging and promising approach in dental tissue engineering. These modules aim to closely replicate the intricate morphology and essential physiological functions of dental tissues. Recent advancements in regenerative research have not only enhanced the assembly techniques for these modules but also highlighted their therapeutic potential in addressing various dental diseases. In this review, we discuss the latest progress in the construction of functional tooth modules, especially on regenerating dental pulp, periodontal tissue, and tooth roots.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qiuyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jiayi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tian Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
5
|
Xie Z, Zhan P, Zhang X, Huang S, Shi X, Lin Z, Gao X. Providing biomimetic microenvironment for pulp regeneration via hydrogel-mediated sustained delivery of tissue-specific developmental signals. Mater Today Bio 2024; 26:101102. [PMID: 38883420 PMCID: PMC11176926 DOI: 10.1016/j.mtbio.2024.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/10/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024] Open
Abstract
Regenerative endodontic therapy is a promising approach to restore the vitality of necrotic teeth, however, pulp regeneration in mature permanent teeth remains a substantial challenge due to insufficient developmental signals. The dentin is embryologically and histologically similar to the pulp, which contains a cocktail of pulp-specific structural proteins and growth factors, thus we proposed an optimizing strategy to obtain dentin matrix extracted proteins (DMEP) and engineered a DMEP functionalized double network hydrogel, whose physicochemical property was tunable by adjusting polymer concentrations to synchronize with regenerated tissues. In vitro models showed that the biomimetic hydrogel with sustained release of DMEP provided a beneficial microenvironment for the encapsulation, propagation and migration of human dental pulp stem cells (hDPSCs). The odontogenic and angiogenic differentiation of hDPSCs were enhanced as well. To elicit the mechanism hidden in the microenvironment to guide cell fate, RNA sequencing was performed and 109 differential expression of genes were identified, the majority of which enriched in cell metabolism, cell differentiation and intercellular communications. The involvement of ERK, p38 and JNK MAPK signaling pathways in the process was confirmed. Of note, in vivo models showed that the injectable and in situ photo-crosslinkable hydrogel was user-friendly for root canal systems and was capable of inducing the regeneration of highly organized and vascularized pulp-like tissues in root segments that subcutaneously implanted into nude mice. Taken together, this study reported a facile and efficient way to fabricate a cell delivery hydrogel with pulp-specific developmental cues, which exhibited promising application and translation potential in future regenerative endodontic fields.
Collapse
Affiliation(s)
- Zhuo Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China
| | - Peimeng Zhan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China
| | - Xinfang Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China
| | - Shuheng Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China
| | - Xuetao Shi
- School of Biomedical Science and Engineering, National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, PR China
| | - Zhengmei Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China
| | - Xianling Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China
| |
Collapse
|
6
|
Aye TA, Polkit S, Klaijan I, Nachanok K, Salil L, Pasutha T. Acemannan-containing bioactive resin modified glass ionomer demonstrates satisfactory physical and biological properties. J Dent Sci 2024; 19:1061-1069. [PMID: 38618108 PMCID: PMC11010605 DOI: 10.1016/j.jds.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/11/2023] [Indexed: 04/16/2024] Open
Abstract
Background/purpose Resin-modified glass ionomers (RMGIs) have been recommended as liner and cement to provide the teeth with mechanical support, a chemical barrier, and thermal insulation. Acemannan, the main polysaccharide extracted from Aloe vera, is a promising inductive material in vitro and in vivo. This study aimed to develop acemannan-containing bioactive resin-modified glass ionomers (RMGIs). Materials and methods Acemannan (3%, 5%, and 10%) was added to the three types of RMGIs (RU-HBM1/Fuji II LC/Vitrebond) to generate 3%, 5%, and 10% aceRMGIs (aceRU/aceFuji/aceVB). The materials were evaluated for depth of cure/flexural strength/cumulative fluoride ion release. Cell viability and vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) secretion were determined using MTT/apoptosis/necrosis assays, and ELISA kits, respectively. RMGI without acemannan were used as controls. Results The aceRMGIs met the ISO requirements for depth of cure and flexural strength. Adding 10% acemannan increased the cumulative fluoride release in the RU and FJ groups, but slightly decreased it in the VB group (P < 0.05). The MTT assay revealed 10% aceRU and all aceFJ groups significantly increased cell viability compared with each control group (P < 0.05). Apoptosis/necrosis assay showed the biocompatibility of all aceRMGIs. Adding acemannan to RMGIs significantly induced VEGF expression in a dose dependent manner while 5% and 10% aceRU significantly induced BMP-2 expression compared with RU group (P < 0.05). Conclusion We conclude that 5-10% acemannan in RMGI is the optimal concentration based on its physical properties and ability to induce pulp cell proliferation and growth factor secretion.
Collapse
Affiliation(s)
- Thant Aye Aye
- Dental Biomaterials Science Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Research Unit of Herbal Medicine, Biomaterial, and Material for Dental Treatment, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sangvanich Polkit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Inchudech Klaijan
- Research Unit of Herbal Medicine, Biomaterial, and Material for Dental Treatment, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Kuvieng Nachanok
- Research Unit of Herbal Medicine, Biomaterial, and Material for Dental Treatment, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Lalitkanjanakul Salil
- Research Unit of Herbal Medicine, Biomaterial, and Material for Dental Treatment, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thunyakitpisal Pasutha
- Research Unit of Herbal Medicine, Biomaterial, and Material for Dental Treatment, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
7
|
Zhao F, Zhang Z, Guo W. The 3-dimensional printing for dental tissue regeneration: the state of the art and future challenges. Front Bioeng Biotechnol 2024; 12:1356580. [PMID: 38456006 PMCID: PMC10917914 DOI: 10.3389/fbioe.2024.1356580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Tooth loss or damage poses great threaten to oral and general health. While contemporary clinical treatments have enabled tooth restoration to a certain extent, achieving functional tooth regeneration remains a challenging task due to the intricate and hierarchically organized architecture of teeth. The past few decades have seen a rapid development of three-dimensional (3D) printing technology, which has provided new breakthroughs in the field of tissue engineering and regenerative dentistry. This review outlined the bioactive materials and stem/progenitor cells used in dental regeneration, summarized recent advancements in the application of 3D printing technology for tooth and tooth-supporting tissue regeneration, including dental pulp, dentin, periodontal ligament, alveolar bone and so on. It also discussed current obstacles and potential future directions, aiming to inspire innovative ideas and encourage further development in regenerative medicine.
Collapse
Affiliation(s)
- Fengxiao Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhijun Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
- Yunnan Key Laboratory of Stomatology, The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
| |
Collapse
|
8
|
Lee M, Lee YS, Shon WJ, Park JC. Physiologic dentin regeneration: its past, present, and future perspectives. Front Physiol 2023; 14:1313927. [PMID: 38148896 PMCID: PMC10750396 DOI: 10.3389/fphys.2023.1313927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023] Open
Abstract
Regenerative dentistry has rapidly progressed since the advancement of stem cell biology and material science. However, more emphasis has been placed on the success of tissue formation than on how well the newly generated tissue retains the original structure and function. Once dentin is lost, tertiary dentinogenesis can be induced by new odontoblastic differentiation or re-activation of existing odontoblasts. The characteristic morphology of odontoblasts generates the tubular nature of dentin, which is a reservoir of fluid, ions, and a number of growth factors, and protects the inner pulp tissue. Therefore, understanding the dynamic but delicate process of new dentin formation by odontoblasts, or odontoblast-like cells, following dentinal defects is crucial. In this regard, various efforts have been conducted to identify novel molecules and materials that can promote the regeneration of dentin with strength and longevity. In this review, we focus on recent progress in dentin regeneration research with biological molecules identified, and discuss its potential in future clinical applications.
Collapse
Affiliation(s)
- Myungjin Lee
- Department of Conservative Dentistry, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Yoon Seon Lee
- Department of Conservative Dentistry, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Won-Jun Shon
- Department of Conservative Dentistry, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Zhang Z, Bi F, Guo W. Research Advances on Hydrogel-Based Materials for Tissue Regeneration and Remineralization in Tooth. Gels 2023; 9:gels9030245. [PMID: 36975694 PMCID: PMC10048036 DOI: 10.3390/gels9030245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Tissue regeneration and remineralization in teeth is a long-term and complex biological process, including the regeneration of pulp and periodontal tissue, and re-mineralization of dentin, cementum and enamel. Suitable materials are needed to provide cell scaffolds, drug carriers or mineralization in this environment. These materials need to regulate the unique odontogenesis process. Hydrogel-based materials are considered good scaffolds for pulp and periodontal tissue repair in the field of tissue engineering due to their inherent biocompatibility and biodegradability, slow release of drugs, simulation of extracellular matrix, and the ability to provide a mineralized template. The excellent properties of hydrogels make them particularly attractive in the research of tissue regeneration and remineralization in teeth. This paper introduces the latest progress of hydrogel-based materials in pulp and periodontal tissue regeneration and hard tissue mineralization and puts forward prospects for their future application. Overall, this review reveals the application of hydrogel-based materials in tissue regeneration and remineralization in teeth.
Collapse
Affiliation(s)
- Zhijun Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Fei Bi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Yunnan Key Laboratory of Stomatology, The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
10
|
Treated Dentin Matrix in Tissue Regeneration: Recent Advances. Pharmaceutics 2022; 15:pharmaceutics15010091. [PMID: 36678720 PMCID: PMC9861705 DOI: 10.3390/pharmaceutics15010091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Tissue engineering is a new therapeutic strategy used to repair serious damage caused by trauma, a tumor or other major diseases, either for vital organs or tissues sited in the oral cavity. Scaffold materials are an indispensable part of this. As an extracellular-matrix-based bio-material, treated dentin matrixes have become promising tissue engineering scaffolds due to their unique natural structure, astonishing biological induction activity and benign bio-compatibility. Furthermore, it is important to note that besides its high bio-activity, a treated dentin matrix can also serve as a carrier and release controller for drug molecules and bio-active agents to contribute to tissue regeneration and immunomodulation processes. This paper describes the research advances of treated dentin matrixes in tissue regeneration from the aspects of its vital properties, biologically inductive abilities and application explorations. Furthermore, we present the concerning challenges of signaling mechanisms, source extension, individualized 3D printing and drug delivery system construction during our investigation into the treated dentin matrix. This paper is expected to provide a reference for further research on treated dentin matrixes in tissue regeneration and better promote the development of relevant disease treatment approaches.
Collapse
|