1
|
Sun L, Wang P, Zheng Y, Wang J, Wang J, Xue SW. Dissecting heterogeneity in major depressive disorder via normative model-driven subtyping of functional brain networks. J Affect Disord 2025; 377:1-13. [PMID: 39978475 DOI: 10.1016/j.jad.2025.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/02/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Major depressive disorder (MDD) is a prevalent and intricate mental health condition characterized by a wide range of symptoms. A fundamental challenge in understanding MDD lies in elucidating the brain mechanisms underlying the complexity and diversity of these symptoms, particularly the heterogeneity reflected in individual differences and subtype variations within brain networks. METHODS To address this problem, we explored the brain network topology using resting-state functional magnetic resonance imaging (rs-fMRI) data from a cohort of 797 MDD patients and 822 matched healthy controls (HC). Utilizing normative modeling of HC, we quantified individual deviations in brain network degree centrality among MDD patients. Through k-means clustering of these deviation profiles, we identified two clinically meaningful MDD subtypes. Moreover, we employed Neurosynth to analyze the cognitive correlates of these subtypes. RESULTS Subtype 1 exhibited positive deviations of degree centrality in the limbic (LIM), frontoparietal (FPN), and default mode networks (DMN), but negative deviations in the visual (VIS) and sensorimotor networks (SMN), positively correlating with higher cognitive functions and negatively with basic perceptual processes. In contrast, subtype 2 demonstrated opposing patterns, characterized by negative deviations in degree centrality of the LIM, FPN, and DMN and positive deviations of the VIS and SMN, along with inverse cognitive associations. CONCLUSIONS Our findings underscore the heterogeneity within MDD, revealing two distinct patterns of network topology between unimodal and transmodal networks, offering a valuable reference for personalized diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Li Sun
- Center for Cognition and Brain Disorders, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China; Department of Neurology, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Peng Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China; Department of Neurology, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Yuhong Zheng
- Center for Cognition and Brain Disorders, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China; Department of Neurology, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Jinghua Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China; Department of Neurology, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Shao-Wei Xue
- Center for Cognition and Brain Disorders, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China; Department of Neurology, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
2
|
Jeong H, Luo T, Kang M, Garvey WF, Blankenau G, Suk JW, Tarzaben M, Hwang S. Neuroimaging findings of adolescent depression: A review by the Research Domain Criteria (RDoC) framework. Psychiatry Res Neuroimaging 2025; 347:111917. [PMID: 39689611 DOI: 10.1016/j.pscychresns.2024.111917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024]
Abstract
This review examines neuroimaging studies on adolescent depression (AD) within the Research Domain Criteria (RDoC) framework, focusing on fMRI, DTI, and EEG findings. The research highlights disrupted connectivity in several neural networks-such as the affective, reward processing, cognitive control, and default mode networks-that underpin emotional and cognitive dysfunctions in AD. Notably, hypoconnectivity in the affective and cognitive control networks correlates with deficits in emotional processing and executive functioning, while hyperactivity in the default mode network relates to excessive self-referential thoughts. Additionally, blunted reward responses and frontal-striatal connectivity are discussed alongside the therapeutic potential of cognitive behavioral therapy (CBT) to modulate these dysfunctional circuits. Despite these insights, variability in findings due to small sample sizes and diverse methodologies suggests a need for further research to validate neuroimaging biomarkers for treatment efficacy and to explore less studied treatments like ECT and TMS in this population. This review underscores the importance of integrating neuroimaging findings to enhance understanding and treatment of AD.
Collapse
Affiliation(s)
- Harim Jeong
- Department of Psychiatry, University of Nebraska Medical Center, 42nd and Emile, Omaha, 68198, NE, United States of America
| | - Tianqi Luo
- Department of Psychiatry, University of Nebraska Medical Center, 42nd and Emile, Omaha, 68198, NE, United States of America
| | - Minjoo Kang
- Department of Psychiatry, University of Nebraska Medical Center, 42nd and Emile, Omaha, 68198, NE, United States of America
| | - William Frederick Garvey
- School of Psychology, University of Sheffield, Cathedral Court, 1 Vicar Lane, Sheffield, S1 2LT, United Kingdom
| | - George Blankenau
- Department of Psychiatry, University of Nebraska Medical Center, 42nd and Emile, Omaha, 68198, NE, United States of America
| | - Ji-Woo Suk
- Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, South Korea
| | - Mohadese Tarzaben
- Department of Psychiatry, University of Nebraska Medical Center, 42nd and Emile, Omaha, 68198, NE, United States of America
| | - Soonjo Hwang
- Department of Psychiatry, University of Nebraska Medical Center, 42nd and Emile, Omaha, 68198, NE, United States of America.
| |
Collapse
|
3
|
Zhu J, Chen X, Lu B, Li XY, Wang ZH, Cao LP, Chen GM, Chen JS, Chen T, Chen TL, Cheng YQ, Chu ZS, Cui SX, Cui XL, Deng ZY, Gong QY, Guo WB, He CC, Hu ZJY, Huang Q, Ji XL, Jia FN, Kuang L, Li BJ, Li F, Li HX, Li T, Lian T, Liao YF, Liu XY, Liu YS, Liu ZN, Long YC, Lu JP, Qiu J, Shan XX, Si TM, Sun PF, Wang CY, Wang HN, Wang X, Wang Y, Wang YW, Wu XP, Wu XR, Wu YK, Xie CM, Xie GR, Xie P, Xu XF, Xue ZP, Yang H, Yu H, Yuan ML, Yuan YG, Zhang AX, Zhao JP, Zhang KR, Zhang W, Zhang ZJ, Yan CG, Yu Y. Transcriptomic decoding of regional cortical vulnerability to major depressive disorder. Commun Biol 2024; 7:960. [PMID: 39117859 PMCID: PMC11310478 DOI: 10.1038/s42003-024-06665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Previous studies in small samples have identified inconsistent cortical abnormalities in major depressive disorder (MDD). Despite genetic influences on MDD and the brain, it is unclear how genetic risk for MDD is translated into spatially patterned cortical vulnerability. Here, we initially examined voxel-wise differences in cortical function and structure using the largest multi-modal MRI data from 1660 MDD patients and 1341 controls. Combined with the Allen Human Brain Atlas, we then adopted transcription-neuroimaging spatial correlation and the newly developed ensemble-based gene category enrichment analysis to identify gene categories with expression related to cortical changes in MDD. Results showed that patients had relatively circumscribed impairments in local functional properties and broadly distributed disruptions in global functional connectivity, consistently characterized by hyper-function in associative areas and hypo-function in primary regions. Moreover, the local functional alterations were correlated with genes enriched for biological functions related to MDD in general (e.g., endoplasmic reticulum stress, mitogen-activated protein kinase, histone acetylation, and DNA methylation); and the global functional connectivity changes were associated with not only MDD-general, but also brain-relevant genes (e.g., neuron, synapse, axon, glial cell, and neurotransmitters). Our findings may provide important insights into the transcriptomic signatures of regional cortical vulnerability to MDD.
Collapse
Affiliation(s)
- Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Ying Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Han Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Ping Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Guan-Mao Chen
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 250024, China
| | - Jian-Shan Chen
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Tao Chen
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tao-Lin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, 610052, China
| | - Yu-Qi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhao-Song Chu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Shi-Xian Cui
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xi-Long Cui
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhao-Yu Deng
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Yong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, 610052, China
| | - Wen-Bin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Can-Can He
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiangsu, 210009, China
| | - Zheng-Jia-Yi Hu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Qian Huang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Xin-Lei Ji
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Feng-Nan Jia
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215003, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Bao-Juan Li
- Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Feng Li
- Beijing Anding Hospital, Capital Medical University, Beijing, 100120, China
| | - Hui-Xian Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310063, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Tao Lian
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi-Fan Liao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Yun Liu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yan-Song Liu
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215003, China
| | - Zhe-Ning Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yi-Cheng Long
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jian-Ping Lu
- Shenzhen Kangning Hospital Shenzhen, Guangzhou, 518020, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Xiao-Xiao Shan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Peng-Feng Sun
- Xi'an Central Hospital, Xi'an, Shaanxi, 710004, China
| | - Chuan-Yue Wang
- Beijing Anding Hospital, Capital Medical University, Beijing, 100120, China
| | - Hua-Ning Wang
- Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiang Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ying Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 250024, China
| | - Yu-Wei Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ping Wu
- Xi'an Central Hospital, Xi'an, Shaanxi, 710004, China
| | - Xin-Ran Wu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Yan-Kun Wu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Chun-Ming Xie
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiangsu, 210009, China
| | - Guang-Rong Xie
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Peng Xie
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400000, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Xiu-Feng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhen-Peng Xue
- Shenzhen Kangning Hospital Shenzhen, Guangzhou, 518020, China
| | - Hong Yang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hua Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310063, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Min-Lan Yuan
- West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Yong-Gui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ai-Xia Zhang
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jing-Ping Zhao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ke-Rang Zhang
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Wei Zhang
- West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Zi-Jing Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
| |
Collapse
|
4
|
Wu X, Xu K, Li T, Wang L, Fu Y, Ma Z, Wu X, Wang Y, Chen F, Song J, Song Y, Lv Y. Abnormal intrinsic functional hubs and connectivity in patients with post-stroke depression. Ann Clin Transl Neurol 2024; 11:1852-1867. [PMID: 38775214 PMCID: PMC11251479 DOI: 10.1002/acn3.52091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE The present study aimed to investigate the specific alterations of brain networks in patients with post-stroke depression (PSD), and further assist in elucidating the brain mechanisms underlying the PSD which would provide supporting evidence for early diagnosis and interventions for the disease. METHODS Resting-state functional magnetic resonace imaging data were acquired from 82 nondepressed stroke patients (Stroke), 39 PSD patients, and 74 healthy controls (HC). Voxel-wise degree centrality (DC) conjoined with seed-based functional connectivity (FC) analyses were performed to investigate the PSD-related connectivity alterations. The relationship between these alterations and depression severity was further examined in PSD patients. RESULTS Relative to both Stroke and HC groups, (1) PSD showed increased centrality in regions within the default mode network (DMN), including contralesional angular gyrus (ANG), posterior cingulate cortex (PCC), and hippocampus (HIP). DC values in contralesional ANG positively correlated with the Patient Health Questionnaire-9 (PHQ-9) scores in PSD group. (2) PSD exhibited increased connectivity between these three seeds showing altered DC and regions within the DMN: bilateral medial prefrontal cortex and middle temporal gyrus and ipsilesional superior parietal gyrus, and regions outside the DMN: bilateral calcarine, ipsilesional inferior occipital gyrus and contralesional lingual gyrus, while decreased connectivity between contralesional ANG and contralesional supramarginal gyrus. Moreover, these FC alterations could predict PHQ-9 scores in PSD group. INTERPRETATION These findings highlight that PSD was related with increased functional connectivity strength in some areas within the DMN, which might be attribute to the specific alterations of connectivity between within DMN and outside DMN regions in PSD.
Collapse
Affiliation(s)
- Xiumei Wu
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiangChina
| | - Kang Xu
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiangChina
| | - Tongyue Li
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiangChina
| | - Luoyu Wang
- School of Biomedical EngineeringShanghaiTech UniversityShanghaiChina
| | - Yanhui Fu
- Department of NeurologyAnshan Changda HospitalAnshanLiaoningChina
| | - Zhenqiang Ma
- Department of NeurologyAnshan Changda HospitalAnshanLiaoningChina
| | - Xiaoyan Wu
- Department of ImageAnshan Changda HospitalAnshanLiaoningChina
| | - Yiying Wang
- Department of UltrasonicsAnshan Changda HospitalAnshanLiaoningChina
| | - Fenyang Chen
- The Fourth Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Jinyi Song
- III Department of Clinic MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Yulin Song
- Department of NeurologyAnshan Changda HospitalAnshanLiaoningChina
| | - Yating Lv
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiangChina
| |
Collapse
|
5
|
Zhou J, Duan J, Liu X, Wang Y, Zheng J, Tang L, Zhao P, Zhang X, Zhu R, Wang F. Functional network characteristics in adolescent psychotic mood disorder: associations with symptom severity and treatment effects. Eur Child Adolesc Psychiatry 2024; 33:2319-2329. [PMID: 37934311 DOI: 10.1007/s00787-023-02314-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 11/08/2023]
Abstract
Adolescent psychotic mood disorder (MDP) is a specific phenotype that characterized by more severe symptoms and prognosis compared to nonpsychotic mood disorder (MDNP). But the underlying neural mechanisms remain unknown, and graph theory analysis can help to understand possible mechanisms of psychotic symptoms from the perspective of functional networks. A total of 177 adolescent patients with mood disorders were recruited, including 61 MDP and 116 MDNP. Functional networks were constructed, and topological properties were compared between the two groups at baseline and after treatment, and the association between properties changes and symptom improvement was explored. Compared to the MDNP group, the MDP group exhibited higher small-world properties (FDR q = 0.003) and normalized clustering coefficients (FDR q = 0.008) but demonstrated decreased nodal properties in the superior temporal gyrus (STG), Heschl's gyrus, and medial cingulate gyrus (all FDR q < 0.05). These properties were found to be correlated with the severity of psychotic symptoms. Topological properties also changed with improvement of psychotic symptoms after treatment, and changes in degree centrality of STG in the MDP was significantly positive correlated with improvement of psychotic symptoms (r = 0.377, P = 0.031). This study indicated that functional networks are more severely impaired in patients with psychotic symptoms. Topological properties, particularly those associated with the STG, hold promise as emerging metrics for assessing symptoms and treatment efficacy in patients with psychotic symptoms.
Collapse
Affiliation(s)
- Jingshuai Zhou
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Street, Nanjing, 210096, Jiangsu, People's Republic of China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jia Duan
- Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoxue Liu
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Street, Nanjing, 210096, Jiangsu, People's Republic of China
| | - Yang Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Street, Nanjing, 210096, Jiangsu, People's Republic of China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, People's Republic of China
| | - Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Street, Nanjing, 210096, Jiangsu, People's Republic of China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, People's Republic of China
| | - Lili Tang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Street, Nanjing, 210096, Jiangsu, People's Republic of China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, People's Republic of China
| | - Pengfei Zhao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Street, Nanjing, 210096, Jiangsu, People's Republic of China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rongxin Zhu
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Street, Nanjing, 210096, Jiangsu, People's Republic of China.
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Street, Nanjing, 210096, Jiangsu, People's Republic of China.
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, People's Republic of China.
- Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Yang C, Zhou Z, Bao W, Zhong R, Tang M, Wang Y, Gao Y, Hu X, Zhang L, Qiu L, Kuang W, Huang X, Gong Q. Sex differences in aberrant functional connectivity of three core networks and subcortical networks in medication-free adolescent-onset major depressive disorder. Cereb Cortex 2024; 34:bhae225. [PMID: 38836288 DOI: 10.1093/cercor/bhae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 06/06/2024] Open
Abstract
Major depressive disorder demonstrated sex differences in prevalence and symptoms, which were more pronounced during adolescence. Yet, research on sex-specific brain network characteristics in adolescent-onset major depressive disorder remains limited. This study investigated sex-specific and nonspecific alterations in resting-state functional connectivity of three core networks (frontoparietal network, salience network, and default mode network) and subcortical networks in adolescent-onset major depressive disorder, using seed-based resting-state functional connectivity in 50 medication-free patients with adolescent-onset major depressive disorder and 56 healthy controls. Irrespective of sex, compared with healthy controls, adolescent-onset major depressive disorder patients showed hypoconnectivity between bilateral hippocampus and right superior temporal gyrus (default mode network). More importantly, we further found that females with adolescent-onset major depressive disorder exhibited hypoconnectivity within the default mode network (medial prefrontal cortex), and between the subcortical regions (i.e. amygdala, striatum, and thalamus) with the default mode network (angular gyrus and posterior cingulate cortex) and the frontoparietal network (dorsal prefrontal cortex), while the opposite patterns of resting-state functional connectivity alterations were observed in males with adolescent-onset major depressive disorder, relative to their sex-matched healthy controls. Moreover, several sex-specific resting-state functional connectivity changes were correlated with age of onset, sleep disturbance, and anxiety in adolescent-onset major depressive disorder with different sex. These findings suggested that these sex-specific resting-state functional connectivity alterations may reflect the differences in brain development or processes related to early illness onset, underscoring the necessity for sex-tailored diagnostic and therapeutic approaches in adolescent-onset major depressive disorder.
Collapse
Affiliation(s)
- Chunyu Yang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Radiology, The Second People's Hospital of Yibin, Yibin, 644000, China
| | - Zilin Zhou
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weijie Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruihan Zhong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengyue Tang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yidan Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingxue Gao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyue Hu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lianqing Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lihua Qiu
- Department of Radiology, The Second People's Hospital of Yibin, Yibin, 644000, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- The Xiamen Key Lab of Psychoradiology and Neuromodulation, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361022, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- The Xiamen Key Lab of Psychoradiology and Neuromodulation, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361022, China
| |
Collapse
|
7
|
Yan H, Han Y, Shan X, Li H, Liu F, Zhao J, Li P, Guo W. Shared and distinctive dysconnectivity patterns underlying pure generalized anxiety disorder (GAD) and comorbid GAD and depressive symptoms. J Psychiatr Res 2024; 170:225-236. [PMID: 38159347 DOI: 10.1016/j.jpsychires.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
The resting-state connectivity features underlying pure generalized anxiety disorder (GAD, G1) and comorbid GAD and depressive symptoms (G2) have not been directly compared. Furthermore, it is unclear whether these features might serve as potential prognostic biomarkers and change with treatment. Degree centrality (DC) in G1 (40 subjects), G2 (58 subjects), and healthy controls (HCs, 54 subjects) was compared before treatment, and the DC of G1 or G2 at baseline was compared with that after 4 weeks of paroxetine treatment. Using support vector regression (SVR), voxel-wise DC across the entire brain and abnormal DC at baseline were employed to predict treatment response. At baseline, G1 and G2 exhibited lower DC in the left mid-cingulate cortex and vermis IV/V compared to HCs. Additionally, compared to HCs, G1 had lower DC in the left middle temporal gyrus, while G2 showed higher DC in the right inferior temporal/fusiform gyrus. However, there was no significant difference in DC between G1 and G2. The SVR based on abnormal DC at baseline could successfully predict treatment response in responders in G2 or in G1 and G2. Notably, the predictive performance based on abnormal DC at baseline surpassed that based on DC across the entire brain. After treatment, G2 responders showed lower DC in the right medial orbital frontal gyrus, while no change in DC was identified in G1 responders. The G1 and G2 showed common and distinct dysconnectivity patterns and they could potentially serve as prognostic biomarkers. Furthermore, DC in patients with GAD could change with treatment.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
8
|
Jia F, Chen X, Du X, Tang Z, Ma X, Ning T, Zou S, Zuo S, Li H, Cui S, Deng Z, Fu J, Fu X, Huang Y, Li X, Lian T, Liao Y, Liu L, Lu B, Wang Y, Wang Y, Wang Z, Ye G, Zhang X, Zhu H, Quan C, Sun H, Yan C, Liu Y. Aberrant degree centrality profiles during rumination in major depressive disorder. Hum Brain Mapp 2023; 44:6245-6257. [PMID: 37837649 PMCID: PMC10619375 DOI: 10.1002/hbm.26510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/16/2023] Open
Abstract
Rumination is closely linked to the onset and maintenance of major depressive disorder (MDD). Prior neuroimaging studies have identified the association between self-reported rumination trait and the functional coupling among a network of brain regions using resting-state functional magnetic resonance imaging (MRI). However, little is known about the underlying neural circuitry mechanism during active rumination in MDD. Degree centrality (DC) is a simple metric to denote network integration, which is critical for higher-order psychological processes such as rumination. During an MRI scan, individuals with MDD (N = 45) and healthy controls (HC, N = 46) completed a rumination state task. We examined the interaction effect between the group (MDD vs. HC) and condition (rumination vs. distraction) on vertex-wise DC. We further characterized the identified brain region's functional involvement with Neurosynth and BrainMap. Network-wise seed-based functional connectivity (FC) analysis was also conducted for the identified region of interest. Finally, exploratory correlation analysis was conducted between the identified region of interest's network FCs and self-reported in-scanner affect levels. We found that a left superior frontal gyrus (SFG) region, generally overlapped with the frontal eye field, showed a significant interaction effect. Further analysis revealed its involvement with executive functions. FCs between this region, the frontoparietal, and the dorsal attention network (DAN) also showed significant interaction effects. Furthermore, its FC to DAN during distraction showed a marginally significant negative association with in-scanner affect level at the baseline. Our results implicated an essential role of the left SFG in the rumination's underlying neural circuitry mechanism in MDD and provided novel evidence for the conceptualization of rumination in terms of impaired executive control.
Collapse
Affiliation(s)
- Feng‐Nan Jia
- Soochow UniversitySuzhouJiangsuChina
- Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Xiao Chen
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research InstituteCentre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
- Magnetic Resonance Imaging Research CenterInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- International Big‐Data Center for Depression ResearchChinese Academy of SciencesBeijingChina
| | - Xiang‐Dong Du
- Soochow UniversitySuzhouJiangsuChina
- Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhen Tang
- Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Xiao‐Yun Ma
- Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Tian‐Tian Ning
- Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Si‐Yun Zou
- Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Shang‐Fu Zuo
- Boston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Hui‐Xian Li
- The Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Shi‐Xian Cui
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
- Magnetic Resonance Imaging Research CenterInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- International Big‐Data Center for Depression ResearchChinese Academy of SciencesBeijingChina
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijingChina
- Sino‐Danish Center for Education and ResearchBeijingChina
| | - Zhao‐Yu Deng
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
- Magnetic Resonance Imaging Research CenterInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- International Big‐Data Center for Depression ResearchChinese Academy of SciencesBeijingChina
| | - Jia‐Lin Fu
- Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Xiao‐Qian Fu
- Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yue‐Xiang Huang
- Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Xue‐Ying Li
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
- Magnetic Resonance Imaging Research CenterInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- International Big‐Data Center for Depression ResearchChinese Academy of SciencesBeijingChina
| | - Tao Lian
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
- Magnetic Resonance Imaging Research CenterInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- International Big‐Data Center for Depression ResearchChinese Academy of SciencesBeijingChina
| | - Yi‐Fan Liao
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
- Magnetic Resonance Imaging Research CenterInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- International Big‐Data Center for Depression ResearchChinese Academy of SciencesBeijingChina
| | - Li‐Li Liu
- Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Bin Lu
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
- Magnetic Resonance Imaging Research CenterInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- International Big‐Data Center for Depression ResearchChinese Academy of SciencesBeijingChina
| | - Yan Wang
- Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yu‐Wei Wang
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
- Magnetic Resonance Imaging Research CenterInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- International Big‐Data Center for Depression ResearchChinese Academy of SciencesBeijingChina
| | - Zi‐Han Wang
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
- Magnetic Resonance Imaging Research CenterInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- International Big‐Data Center for Depression ResearchChinese Academy of SciencesBeijingChina
| | - Gang Ye
- Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Xin‐Zhu Zhang
- Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Hong‐Liang Zhu
- Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Chuan‐Sheng Quan
- Department of PsychologyZhangjiagang Fourth People's HospitalZhangjiagangJiangsuChina
| | - Hong‐Yan Sun
- Department of RadiologySuzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Chao‐Gan Yan
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
- Magnetic Resonance Imaging Research CenterInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- International Big‐Data Center for Depression ResearchChinese Academy of SciencesBeijingChina
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijingChina
- Sino‐Danish Center for Education and ResearchBeijingChina
| | - Yan‐Song Liu
- Soochow UniversitySuzhouJiangsuChina
- Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
9
|
Zhou Z, Gao Y, Feng R, Zhuo L, Bao W, Liang K, Qiu H, Cao L, Tang M, Li H, Zhang L, Huang G, Huang X. Aberrant intrinsic hippocampal and orbitofrontal connectivity in drug-naive adolescent patients with major depressive disorder. Eur Child Adolesc Psychiatry 2023; 32:2363-2374. [PMID: 36115899 DOI: 10.1007/s00787-022-02086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/10/2022] [Indexed: 11/25/2022]
Abstract
Alterations in resting-state functional connectivity (rsFC) of hippocampus and orbitofrontal cortex (OFC) have been highly implicated in major depressive disorder (MDD) and the researches have penetrated to the subregional level. However, relatively little is known about the intrinsic connectivity patterns of these two regions in adolescent MDD (aMDD), especially that of their functional subregions. Therefore, in the current study, we recruited 68 first-episode drug-naive aMDD patients and 43 matched typically developing controls (TDC) to characterize the alterations of whole-brain rsFC patterns in hippocampus and OFC at both regional and subregional levels in aMDD. The definition of specific functional subregions in hippocampus and OFC were based on the prior functional clustering-analysis results. Furthermore, the relationship between rsFC alterations and clinical features was also explored. Compared to TDC group, aMDD patients showed decreased connectivity of the left whole hippocampus with bilateral OFC and right inferior temporal gyrus at the regional level and increased connectivity between one of the right hippocampal subregions and right posterior insula at the subregional level. Reduced connectivity of OFC was only found in the subregion of left OFC with left anterior insula extending to lenticula in aMDD patients relative to TDC group. Our study identifies that the aberrant hippocampal and orbitofrontal rsFC was predominantly located in the insular cortex and could be summarized as an altered hippo-orbitofrontal-insular circuit in aMDD, which may be the unique features of brain network dysfunction in depression at this particular age stage. Moreover, we observed the distinct rsFC alterations in adolescent depression at the subregional level, especially the medial and lateral OFC.
Collapse
Affiliation(s)
- Zilin Zhou
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yingxue Gao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Ruohan Feng
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Lihua Zhuo
- Department of Radiology, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Weijie Bao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Kaili Liang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Qiu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lingxiao Cao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Mengyue Tang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Hailong Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lianqing Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Guoping Huang
- Department of Psychiatry, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
- Psychoradiology Research Unit, Chinese Academy of Medical Science, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Sun X, Xia M, He Y. Towards dysfunctional connectome development in depressed adolescents. Eur Child Adolesc Psychiatry 2023; 32:1147-1149. [PMID: 37150794 DOI: 10.1007/s00787-023-02223-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Affiliation(s)
- Xiaoyi Sun
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
| | - Mingrui Xia
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yong He
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China.
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
11
|
Liu M, Huang Y, Li X, Liu Y, Yu R, Long Y, Lv F, Zhou X. Aberrant frontolimbic circuit in female depressed adolescents with and without suicidal attempts: A resting-state functional magnetic resonance imaging study. Front Psychiatry 2022; 13:1007144. [PMID: 36386991 PMCID: PMC9641155 DOI: 10.3389/fpsyt.2022.1007144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background The neurobiological basis of suicidal behaviors among female adolescents with major depressive disorder (MDD) remains largely unclear. Materials and methods Fifty-eight drug-naïve, first-episode female adolescent MDD [including 31 patients with suicidal attempt (SA group) and 27 patients without SA (non-SA group)], and 36 matched healthy controls (HCs) participated in the present study. Resting-state functional magnetic resonance imaging (MRI) was performed on each subject. The metrics of the amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) were compared among the three groups. Then seed-based functional connectivity (FC) was conducted based on the ALFF/fALFF and ReHo results, which were then correlated to clinical variables. Results Compared with the non-SA group, the SA group exhibited increased fALFF in the bilateral insula and right precentral gyrus, and enhanced ReHo in the left superior temporal gyrus, left middle cingulate cortex, right insula, and right precentral gyrus. Relative to the HCs, the SA group demonstrated additionally reduced fALFF and ReHo in the left middle frontal gyrus. Moreover, the SA group showed increased FC between the right precentral gyrus and the left middle frontal gyrus and left insula, and between the right insula and anterior/middle cingulate cortex compared to the non-SA and HC groups. In addition, the fALFF in the left middle frontal gyrus was positively correlated with the 17-item Hamilton Depression Rating Scale scores, and the values in the fALFF/ReHo in the right insula were positively correlated with the duration of MDD within the patient group. Conclusion These findings highlight the multiple abnormalities of the frontolimbic circuit, which may enhance our understanding of the neurobiological basis underlying female MDD with SA during adolescence.
Collapse
Affiliation(s)
- Mengqi Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Huang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Renqiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yicheng Long
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Mental Disorders, Changsha, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Connectome-guided transcranial magnetic stimulation treatment in depression. Eur Child Adolesc Psychiatry 2022; 31:1481-1483. [PMID: 36151354 DOI: 10.1007/s00787-022-02089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|