1
|
Cannone G, Visentin S, Palud A, Henneke G, Spagnolo L. Structure of an octameric form of the minichromosome maintenance protein from the archaeon Pyrococcus abyssi. Sci Rep 2017; 7:42019. [PMID: 28176822 PMCID: PMC5296750 DOI: 10.1038/srep42019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Cell division is a complex process that requires precise duplication of genetic material. Duplication is concerted by replisomes. The Minichromosome Maintenance (MCM) replicative helicase is a crucial component of replisomes. Eukaryotic and archaeal MCM proteins are highly conserved. In fact, archaeal MCMs are powerful tools for elucidating essential features of MCM function. However, while eukaryotic MCM2-7 is a heterocomplex made of different polypeptide chains, the MCM complexes of many Archaea form homohexamers from a single gene product. Moreover, some archaeal MCMs are polymorphic, and both hexameric and heptameric architectures have been reported for the same polypeptide. Here, we present the structure of the archaeal MCM helicase from Pyrococcus abyssi in its single octameric ring assembly. To our knowledge, this is the first report of a full-length octameric MCM helicase.
Collapse
Affiliation(s)
- Giuseppe Cannone
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
- School of Biological Sciences and Max Born Crescent, Edinburgh EH9 3JR, UK
- Centre for Science at extreme conditions, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3JR, UK
| | - Silvia Visentin
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
- School of Biological Sciences and Max Born Crescent, Edinburgh EH9 3JR, UK
- ISIS neutron source, Science and Technologies Research Council, Rutherford Appleton Laboratories, Harwell, OX11 0QX United Kingdom
| | - Adeline Palud
- IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, ZI de la pointe du diable CS 10070 29280 Plouzané, France
- Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
- CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
| | - Ghislaine Henneke
- IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, ZI de la pointe du diable CS 10070 29280 Plouzané, France
- Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
- CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
| | - Laura Spagnolo
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
2
|
Archaeal MCM Proteins as an Analog for the Eukaryotic Mcm2-7 Helicase to Reveal Essential Features of Structure and Function. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:305497. [PMID: 26539061 PMCID: PMC4619765 DOI: 10.1155/2015/305497] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/05/2015] [Indexed: 11/18/2022]
Abstract
In eukaryotes, the replicative helicase is the large multisubunit CMG complex consisting of the Mcm2–7 hexameric ring, Cdc45, and the tetrameric GINS complex. The Mcm2–7 ring assembles from six different, related proteins and forms the core of this complex. In archaea, a homologous MCM hexameric ring functions as the replicative helicase at the replication fork. Archaeal MCM proteins form thermostable homohexamers, facilitating their use as models of the eukaryotic Mcm2–7 helicase. Here we review archaeal MCM helicase structure and function and how the archaeal findings relate to the eukaryotic Mcm2–7 ring.
Collapse
|
3
|
Characterization of the MCM homohexamer from the thermoacidophilic euryarchaeon Picrophilus torridus. Sci Rep 2015; 5:9057. [PMID: 25762096 PMCID: PMC4356968 DOI: 10.1038/srep09057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 02/05/2015] [Indexed: 01/04/2023] Open
Abstract
The typical archaeal MCM exhibits helicase activity independently invitro. This study characterizes MCM from the euryarchaeon Picrophilus torridus. While PtMCM hydrolyzes ATP in DNA-independent manner, it displays very poor ability to unwind DNA independently, and then too only under acidic conditions. The protein exists stably in complex with PtGINS in whole cell lysates, interacting directly with PtGINS under neutral and acidic conditions. GINS strongly activates MCM helicase activity, but only at low pH. In consonance with this, PtGINS activates PtMCM-mediated ATP hydrolysis only at low pH, with the amount of ATP hydrolyzed during the helicase reaction increasing more than fifty-fold in the presence of GINS. While the stimulation of MCM-mediated helicase activity by GINS has been reported in MCMs from P.furiosus, T.kodakarensis, and very recently, T.acidophilum, to the best of our knowledge, this is the first report of an MCM helicase demonstrating DNA unwinding activity only at such acidic pH, across all archaea and eukaryotes. PtGINS may induce/stabilize a conducive conformation of PtMCM under acidic conditions, favouring PtMCM-mediated DNA unwinding coupled to ATP hydrolysis. Our findings underscore the existence of divergent modes of replication regulation among archaea and the importance of investigating replication events in more archaeal organisms.
Collapse
|
4
|
Activation of the MCM helicase from the thermophilic archaeon, Thermoplasma acidophilum by interactions with GINS and Cdc6-2. Extremophiles 2014; 18:915-24. [PMID: 25107272 DOI: 10.1007/s00792-014-0673-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/06/2014] [Indexed: 01/25/2023]
Abstract
In DNA replication studies, the mechanism for regulation of the various steps from initiation to elongation is a crucial subject to understand cell cycle control. The eukaryotic minichromosome maintenance (MCM) protein complex is recruited to the replication origin by Cdc6 and Cdt1 to form the pre-replication complex, and participates in forming the CMG complex formation with Cdc45 and GINS to work as the active helicase. Intriguingly, Thermoplasma acidophilum, as well as many other archaea, has only one Gins protein homolog, contrary to the heterotetramer of the eukaryotic GINS made of four different proteins. The Gins51 protein reportedly forms a homotetramer (TaGINS) and physically interacts with TaMCM. In addition, TaCdc6-2, one of the two Cdc6/Orc1 homologs in T. acidophilum reportedly stimulates the ATPase and helicase activities of TaMCM in vitro. Here, we found a reaction condition, in which TaGINS stimulated the ATPase and helicase activities of TaMCM in a concentration dependent manner. Furthermore, the stimulation of the TaMCM helicase activity by TaGINS was enhanced by the addition of TaCdc6-2. A gel retardation assay revealed that TaMCM, TaGINS, and TaCdc6-2 form a complex on ssDNA. However, glutaraldehyde-crosslinking was necessary to detect the shifted band, indicating that the ternary complex of TaMCM-TaGINS-TaCdc6-2 is not stable in vitro. Immunoprecipitation experiment supported a weak interaction of these three proteins in vivo. Activation of the replicative helicase by a mechanism including a Cdc6-like protein suggests the divergent evolution after the division into Archaea and Eukarya.
Collapse
|
5
|
Fu Y, Slaymaker IM, Wang J, Wang G, Chen XS. The 1.8-Å crystal structure of the N-terminal domain of an archaeal MCM as a right-handed filament. J Mol Biol 2014; 426:1512-23. [PMID: 24378617 DOI: 10.1016/j.jmb.2013.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 11/16/2022]
Abstract
Mini-chromosome maintenance (MCM) proteins are the replicative helicase necessary for DNA replication in both eukarya and archaea. Most of archaea only have one MCM gene. Here, we report a 1.8-Å crystal structure of the N-terminal MCM from the archaeon Thermoplasma acidophilum (tapMCM). In the structure, the MCM N-terminus forms a right-handed filament that contains six subunits in each turn, with a diameter of 25Å of the central channel opening. The inner surface is highly positively charged, indicating DNA binding. This filament structure with six subunits per turn may also suggests a potential role for an open-ring structure for hexameric MCM and dynamic conformational changes in initiation and elongation stages of DNA replication.
Collapse
Affiliation(s)
- Yang Fu
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ian M Slaymaker
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Junfeng Wang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ganggang Wang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
6
|
Lyubimov AY, Costa A, Bleichert F, Botchan MR, Berger JM. ATP-dependent conformational dynamics underlie the functional asymmetry of the replicative helicase from a minimalist eukaryote. Proc Natl Acad Sci U S A 2012; 109:11999-2004. [PMID: 22778422 PMCID: PMC3409790 DOI: 10.1073/pnas.1209406109] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heterohexameric minichromosome maintenance (MCM2-7) complex is an ATPase that serves as the central replicative helicase in eukaryotes. During initiation, the ring-shaped MCM2-7 particle is thought to open to facilitate loading onto DNA. The conformational state accessed during ring opening, the interplay between ATP binding and MCM2-7 architecture, and the use of these events in the regulation of DNA unwinding are poorly understood. To address these issues in isolation from the regulatory complexity of existing eukaryotic model systems, we investigated the structure/function relationships of a naturally minimized MCM2-7 complex from the microsporidian parasite Encephalitozoon cuniculi. Electron microscopy and small-angle X-ray scattering studies show that, in the absence of ATP, MCM2-7 spontaneously adopts a left-handed, open-ring structure. Nucleotide binding does not promote ring closure but does cause the particle to constrict in a two-step process that correlates with the filling of high- and low-affinity ATPase sites. Our findings support the idea that an open ring forms the default conformational state of the isolated MCM2-7 complex, and they provide a structural framework for understanding the multiphasic ATPase kinetics observed in different MCM2-7 systems.
Collapse
Affiliation(s)
- Artem Y. Lyubimov
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, and
| | - Alessandro Costa
- Clare Hall Laboratories, London Research Institute, Cancer Research United Kingdom, Herts EN6 3LD, United Kingdom
| | - Franziska Bleichert
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, and
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA 94720; and
| | - Michael R. Botchan
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, and
| | - James M. Berger
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, and
| |
Collapse
|
7
|
Pan M, Santangelo TJ, Li Z, Reeve JN, Kelman Z. Thermococcus kodakarensis encodes three MCM homologs but only one is essential. Nucleic Acids Res 2011; 39:9671-80. [PMID: 21821658 PMCID: PMC3239210 DOI: 10.1093/nar/gkr624] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The minichromosome maintenance (MCM) complex is thought to function as the replicative helicase in archaea and eukaryotes. In eukaryotes, this complex is an assembly of six different but related polypeptides (MCM2-7) but, in most archaea, one MCM protein assembles to form a homohexameric complex. Atypically, the Thermococcus kodakarensis genome encodes three archaeal MCM homologs, here designated MCM1-3, although MCM1 and MCM2 are unusual in having long and unique N-terminal extensions. The results reported establish that MCM2 and MCM3 assemble into homohexamers and exhibit DNA binding, helicase and ATPase activities in vitro typical of archaeal MCMs. In contrast, MCM1 does not form homohexamers and although MCM1 binds DNA and has ATPase activity, it has only minimal helicase activity in vitro. Removal of the N-terminal extension had no detectable effects on MCM1 but increased the helicase activity of MCM2. A T. kodakarensis strain with the genes TK0096 (MCM1) and TK1361 (MCM2) deleted has been constructed that exhibits no detectable defects in growth or viability, but all attempts to delete TK1620 (MCM3) have been unsuccessful arguing that that MCM3 is essential and is likely the replicative helicase in T. kodakarensis. The origins and possible function(s) of the three MCM proteins are discussed.
Collapse
Affiliation(s)
- Miao Pan
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | | | | | | | |
Collapse
|
8
|
Ogino H, Ishino S, Mayanagi K, Haugland GT, Birkeland NK, Yamagishi A, Ishino Y. The GINS complex from the thermophilic archaeon, Thermoplasma acidophilum may function as a homotetramer in DNA replication. Extremophiles 2011; 15:529-39. [PMID: 21656171 DOI: 10.1007/s00792-011-0383-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/20/2011] [Indexed: 11/30/2022]
Abstract
The eukaryotic GINS heterotetramer, consisting of Sld5, Psf1, Psf2, and Psf3, participates in "CMG complex" formation with mini-chromosome maintenance (MCM) and Cdc45 as a key component of a replicative helicase. There are only two homologs of the GINS proteins in Archaea, and these proteins, Gins51 and Gins23, form a heterotetrameric GINS with a 2:2 molar ratio. The Pyrococcus furiosus GINS stimulates the ATPase and helicase activities of its cognate MCM, whereas the Sulfolobus solfataricus GINS does not affect those activities of its cognate MCM, although the proteins bind each other. Intriguingly, Thermoplasma acidophilum, as well as many euryarchaea, have only one gene encoding the sequence homologous to that of archaeal Gins protein (Gins51) on the genome. In this study, we investigated the biochemical properties of the gene product (TaGins51). A gel filtration and electron microscopy revealed that TaGins51 forms a homotetramer. A physical interaction between TaGins51 and TaMcm was detected by a surface plasmon resonance analysis. Unexpectedly, TaGins51 inhibited the ATPase activity, but did not affect the helicase activity of its cognate MCM. These results suggest that another factor is required to form a stable helicase complex with MCM and GINS at the replication fork in T. acidophilum cells.
Collapse
Affiliation(s)
- Hiromi Ogino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The Mcm2-7 complex serves as the eukaryotic replicative helicase, the molecular motor that both unwinds duplex DNA and powers fork progression during DNA replication. Consistent with its central role in this process, much prior work has illustrated that Mcm2-7 loading and activation are landmark events in the regulation of DNA replication. Unlike any other hexameric helicase, Mcm2-7 is composed of six unique and essential subunits. Although the unusual oligomeric nature of this complex has long hampered biochemical investigations, recent advances with both the eukaryotic as well as the simpler archaeal Mcm complexes provide mechanistic insight into their function. In contrast to better-studied homohexameric helicases, evidence suggests that the six Mcm2-7 complex ATPase active sites are functionally distinct and are likely specialized to accommodate the regulatory constraints of the eukaryotic process.
Collapse
|
10
|
Sakakibara N, Kelman LM, Kelman Z. Unwinding the structure and function of the archaeal MCM helicase. Mol Microbiol 2009; 72:286-96. [DOI: 10.1111/j.1365-2958.2009.06663.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
How is the archaeal MCM helicase assembled at the origin? Possible mechanisms. Biochem Soc Trans 2009; 37:7-11. [PMID: 19143593 DOI: 10.1042/bst0370007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order for any organism to replicate its DNA, a helicase must unwind the duplex DNA in front of the replication fork. In archaea, the replicative helicase is the MCM (minichromosome maintenance) helicase. Although much is known about the biochemical properties of the MCM helicase, the mechanism of assembly at the origin of replication is unknown. In the present paper, several possible mechanisms for the loading process are described.
Collapse
|