1
|
Derardja AE, Pretzler M, Barkat M, Rompel A. Extraction, Purification, and Characterization of Olive ( Olea europaea L., cv. Chemlal) Polyphenol Oxidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3099-3112. [PMID: 38291573 PMCID: PMC10870767 DOI: 10.1021/acs.jafc.3c07776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024]
Abstract
Among fruits susceptible to enzymatic browning, olive polyphenol oxidase (OePPO) stood out as being unisolated from a natural source until this study, wherein we successfully purified and characterized the enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of heated and nonheated OePPO revealed distinct molecular weights of 35 and 54 kDa, respectively, indicative of its oligomeric nature comprising active and C-terminal subunits. OePPO displayed latency, fully activating with 5 mM SDS under optimal conditions of pH 7.5 and 15 °C. The enzyme demonstrated monophenolase activity and showcased the highest efficiency toward hydroxytyrosol. Despite its low optimal temperature, OePPO exhibited high thermal resistance, maintaining stability up to 90 °C. However, beyond this threshold, the oligomeric enzyme disassociated, yielding a denatured main subunit and C-terminal fragments. Six OePPO genes were found in the fruits. Tryptic digestion identified the enzyme as mature OePPO1 (INSDC OY733096), while mass spectrometry detected the active form mass alongside several C-terminal fragments, revealing potential cleavage sites (Gly407, Tyr408).
Collapse
Affiliation(s)
- Ala eddine Derardja
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Wien, Austria
- Laboratoire
Bioqual, INATAA, Université Frères
Mentouri, Constantine
1, Route de Ain El-Bey, 25000 Constantine, Algeria
| | - Matthias Pretzler
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Wien, Austria
| | - Malika Barkat
- Laboratoire
Bioqual, INATAA, Université Frères
Mentouri, Constantine
1, Route de Ain El-Bey, 25000 Constantine, Algeria
| | - Annette Rompel
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Wien, Austria
| |
Collapse
|
2
|
Elgrail MM, Chen E, Shaffer MG, Srinivasa V, Griffith MP, Mustapha MM, Shields RK, Van Tyne D, Culyba MJ. Convergent Evolution of Antibiotic Tolerance in Patients with Persistent Methicillin-Resistant Staphylococcus aureus Bacteremia. Infect Immun 2022; 90:e0000122. [PMID: 35285704 PMCID: PMC9022596 DOI: 10.1128/iai.00001-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023] Open
Abstract
Severe infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are often complicated by persistent bacteremia (PB) despite active antibiotic therapy. Antibiotic resistance rarely contributes to MRSA-PB, suggesting an important role for antibiotic tolerance pathways. To identify bacterial factors associated with PB, we sequenced the whole genomes of 206 MRSA isolates derived from 20 patients with PB and looked for genetic signatures of adaptive within-host evolution. We found that genes involved in the tricarboxylic acid cycle (citZ and odhA) and stringent response (rel) bore repeated, independent, protein-altering mutations across multiple infections, indicative of convergent evolution. Both pathways have been linked previously to antibiotic tolerance. Mutations in citZ were identified most frequently, and further study showed they caused antibiotic tolerance through the loss of citrate synthase activity. Isolates harboring mutant alleles (citZ, odhA, and rel) were sampled at a low frequency from each patient but were detected in 10 (50%) of the patients. These results suggest that subpopulations of antibiotic-tolerant mutants emerge commonly during MRSA-PB. Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of hospital-acquired infection. In severe cases, bacteria invade the bloodstream and cause bacteremia, a condition associated with high mortality. We analyzed the genomes of serial MRSA isolates derived from patients with bacteremia that persisted through active antibiotic therapy and found a frequent evolution of pathways leading to antibiotic tolerance. Antibiotic tolerance is distinct from antibiotic resistance, and the role of tolerance in clinical failure of antibiotic therapy is defined poorly. Our results show genetic evidence that perturbation of specific metabolic pathways plays an important role in the ability of MRSA to evade antibiotics during severe infection.
Collapse
Affiliation(s)
- Mitra M. Elgrail
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edwin Chen
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Marla G. Shaffer
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vatsala Srinivasa
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Marissa P. Griffith
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mustapha M. Mustapha
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ryan K. Shields
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daria Van Tyne
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Matthew J. Culyba
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Peng M, Siebert DL, Engqvist MKM, Niemeyer CM, Rabe KS. Modeling-Assisted Design of Thermostable Benzaldehyde Lyases from Rhodococcus erythropolis for Continuous Production of α-Hydroxy Ketones. Chembiochem 2022; 23:e202100468. [PMID: 34558792 PMCID: PMC9293332 DOI: 10.1002/cbic.202100468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Indexed: 12/18/2022]
Abstract
Enantiopure α-hydroxy ketones are important building blocks of active pharmaceutical ingredients (APIs), which can be produced by thiamine-diphosphate-dependent lyases, such as benzaldehyde lyase. Here we report the discovery of a novel thermostable benzaldehyde lyase from Rhodococcus erythropolis R138 (ReBAL). While the overall sequence identity to the only experimentally confirmed benzaldehyde lyase from Pseudomonas fluorescens Biovar I (PfBAL) was only 65 %, comparison of a structural model of ReBAL with the crystal structure of PfBAL revealed only four divergent amino acids in the substrate binding cavity. Based on rational design, we generated two ReBAL variants, which were characterized along with the wild-type enzyme in terms of their substrate spectrum, thermostability and biocatalytic performance in the presence of different co-solvents. We found that the new enzyme variants have a significantly higher thermostability (up to 22 °C increase in T50 ) and a different co-solvent-dependent activity. Using the most stable variant immobilized in packed-bed reactors via the SpyCatcher/SpyTag system, (R)-benzoin was synthesized from benzaldehyde over a period of seven days with a stable space-time-yield of 9.3 mmol ⋅ L-1 ⋅ d-1 . Our work expands the important class of benzaldehyde lyases and therefore contributes to the development of continuous biocatalytic processes for the production of α-hydroxy ketones and APIs.
Collapse
Affiliation(s)
- Martin Peng
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Dominik L. Siebert
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Martin K. M. Engqvist
- Chalmers University of TechnologyDepartment of Biology and Biological EngineeringDivision of Systems and Synthetic BiologyKemivägen 10412 96GothenburgSweden
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Kersten S. Rabe
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
4
|
Xu Z, Cen YK, Zou SP, Xue YP, Zheng YG. Recent advances in the improvement of enzyme thermostability by structure modification. Crit Rev Biotechnol 2019; 40:83-98. [DOI: 10.1080/07388551.2019.1682963] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Zhe Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Ke Cen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Shu-Ping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
5
|
Bazilevsky GA, Affronti HC, Wei X, Campbell SL, Wellen KE, Marmorstein R. ATP-citrate lyase multimerization is required for coenzyme-A substrate binding and catalysis. J Biol Chem 2019; 294:7259-7268. [PMID: 30877197 PMCID: PMC6509486 DOI: 10.1074/jbc.ra118.006685] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/05/2019] [Indexed: 12/16/2022] Open
Abstract
ATP-citrate lyase (ACLY) is a major source of nucleocytosolic acetyl-CoA, a fundamental building block of carbon metabolism in eukaryotes. ACLY is aberrantly regulated in many cancers, cardiovascular disease, and metabolic disorders. However, the molecular mechanisms determining ACLY activity and function are unclear. To this end, we investigated the role of the uncharacterized ACLY C-terminal citrate synthase homology domain in the mechanism of acetyl-CoA formation. Using recombinant, purified ACLY and a suite of biochemical and biophysical approaches, including analytical ultracentrifugation, dynamic light scattering, and thermal stability assays, we demonstrated that the C terminus maintains ACLY tetramerization, a conserved and essential quaternary structure in vitro and likely also in vivo Furthermore, we show that the C terminus, only in the context of the full-length enzyme, is necessary for full ACLY binding to CoA. Together, we demonstrate that ACLY forms a homotetramer through the C terminus to facilitate CoA binding and acetyl-CoA production. Our findings highlight a novel and unique role of the C-terminal citrate synthase homology domain in ACLY function and catalysis, adding to the understanding of the molecular basis for acetyl-CoA synthesis by ACLY. This newly discovered means of ACLY regulation has implications for the development of novel ACLY modulators to target acetyl-CoA-dependent cellular processes for potential therapeutic use.
Collapse
Affiliation(s)
- Gleb A Bazilevsky
- From the Graduate Group in Cell and Molecular Biology
- the Abramson Family Cancer Research Institute, and
| | - Hayley C Affronti
- the Abramson Family Cancer Research Institute, and
- Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Xuepeng Wei
- the Abramson Family Cancer Research Institute, and
- the Departments of Biochemistry and Biophysics and
| | - Sydney L Campbell
- From the Graduate Group in Cell and Molecular Biology
- the Abramson Family Cancer Research Institute, and
- Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kathryn E Wellen
- From the Graduate Group in Cell and Molecular Biology
- the Abramson Family Cancer Research Institute, and
- Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ronen Marmorstein
- From the Graduate Group in Cell and Molecular Biology,
- the Abramson Family Cancer Research Institute, and
- the Departments of Biochemistry and Biophysics and
| |
Collapse
|
6
|
Garg DK, Kundu B. Hyperthermophilic l -asparaginase bypasses monomeric intermediates during folding to retain cooperativity and avoid amyloid assembly. Arch Biochem Biophys 2017; 622:36-46. [DOI: 10.1016/j.abb.2017.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 10/19/2022]
|
7
|
Schwartz MH, Pan T. Temperature dependent mistranslation in a hyperthermophile adapts proteins to lower temperatures. Nucleic Acids Res 2015; 44:294-303. [PMID: 26657639 PMCID: PMC4705672 DOI: 10.1093/nar/gkv1379] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/25/2015] [Indexed: 12/01/2022] Open
Abstract
All organisms universally encode, synthesize and utilize proteins that function optimally within a subset of growth conditions. While healthy cells are thought to maintain high translational fidelity within their natural habitats, natural environments can easily fluctuate outside the optimal functional range of genetically encoded proteins. The hyperthermophilic archaeon Aeropyrum pernix (A. pernix) can grow throughout temperature variations ranging from 70 to 100°C, although the specific factors facilitating such adaptability are unknown. Here, we show that A. pernix undergoes constitutive leucine to methionine mistranslation at low growth temperatures. Low-temperature mistranslation is facilitated by the misacylation of tRNALeu with methionine by the methionyl-tRNA synthetase (MetRS). At low growth temperatures, the A. pernix MetRS undergoes a temperature dependent shift in tRNA charging fidelity, allowing the enzyme to conditionally charge tRNALeu with methionine. We demonstrate enhanced low-temperature activity for A. pernix citrate synthase that is synthesized during leucine to methionine mistranslation at low-temperature growth compared to its high-fidelity counterpart synthesized at high-temperature. Our results show that conditional leucine to methionine mistranslation can make protein adjustments capable of improving the low-temperature activity of hyperthermophilic proteins, likely by facilitating the increasing flexibility required for greater protein function at lower physiological temperatures.
Collapse
Affiliation(s)
- Michael H Schwartz
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 E. 57th St., Chicago, IL 60637, USA Committee on Microbiology, University of Chicago, 929 E. 57th St., Chicago, IL 60637, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 E. 57th St., Chicago, IL 60637, USA Committee on Microbiology, University of Chicago, 929 E. 57th St., Chicago, IL 60637, USA
| |
Collapse
|
8
|
Wells SA, Crennell SJ, Danson MJ. Structures of mesophilic and extremophilic citrate synthases reveal rigidity and flexibility for function. Proteins 2014; 82:2657-70. [PMID: 24948467 DOI: 10.1002/prot.24630] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/23/2014] [Accepted: 06/11/2014] [Indexed: 11/07/2022]
Abstract
Citrate synthase (CS) catalyses the entry of carbon into the citric acid cycle and is highly-conserved structurally across the tree of life. Crystal structures of dimeric CSs are known in both "open" and "closed" forms, which differ by a substantial domain motion that closes the substrate-binding clefts. We explore both the static rigidity and the dynamic flexibility of CS structures from mesophilic and extremophilic organisms from all three evolutionary domains. The computational expense of this wide-ranging exploration is kept to a minimum by the use of rigidity analysis and rapid all-atom simulations of flexible motion, combining geometric simulation and elastic network modeling. CS structures from thermophiles display increased structural rigidity compared with the mesophilic enzyme. A CS structure from a psychrophile, stabilized by strong ionic interactions, appears to display likewise increased rigidity in conventional rigidity analysis; however, a novel modified analysis, taking into account the weakening of the hydrophobic effect at low temperatures, shows a more appropriate decreased rigidity. These rigidity variations do not, however, affect the character of the flexible dynamics, which are well conserved across all the structures studied. Simulation trajectories not only duplicate the crystallographically observed symmetric open-to-closed transitions, but also identify motions describing a previously unidentified antisymmetric functional motion. This antisymmetric motion would not be directly observed in crystallography but is revealed as an intrinsic property of the CS structure by modeling of flexible motion. This suggests that the functional motion closing the binding clefts in CS may be independent rather than symmetric and cooperative.
Collapse
Affiliation(s)
- Stephen A Wells
- Department of Chemistry/Department of Physics, University of Bath, BATH, BA2 7AY, United Kingdom
| | | | | |
Collapse
|