1
|
Li S, Mu R, Zhang Y, Wang S, Wright ADG, Si H, Li Z. Dynamics of Intestinal Mucosa Microbiota in Juvenile Sika Deer During Early Growth. Int J Mol Sci 2025; 26:892. [PMID: 39940663 PMCID: PMC11817005 DOI: 10.3390/ijms26030892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
The establishment of gut microbiota in young ruminants has a profound impact on their productive performance in adulthood. The microbial communities of ruminants differ significantly across the different regions of the digestive tract, as well as between the mucosa and lumen. In this study, we analyzed the characteristics of the microbiota of the small intestine (jejunum and ileum) and large intestine (cecum and colon) of sika deer on day 1 (birth), day 42 (transition period) and day 70 (rumination period) using 16S rRNA gene sequencing. The results showed that the microbial diversity of the mucosa in the jejunum, ileum, cecum and colon of sika deer was higher on day 70 than on day 1, and the diversity of the cecal mucosa was significantly higher than that in the small intestine. Principal coordinates analysis (PCoA) showed that the microbial community structures of the small and large intestinal mucosa were significantly different, and the microbial community structure of sika deer on day 1 was significantly different from that on days 42 and 70. The relative abundances of Methylobacterium-Methylorubrum, Pelagibacterium, Acinetobacter and Staphylococcus were higher in the small intestinal mucosa, while Alistipes, Prevotellaceae UCG-004, Eubacterium coprostanoligenes group and Lachnospiraceae unclassified were higher in the large intestinal mucosa. We also observed increased levels of specific microbiota in the small intestinal (Turicibacter and Cellulosilyticum) and large intestinal mucosa (Treponema, Romboutsia, Oscillospirales UCG-005 and Peptostreptococcaceae unclassified) with animal growth. A comparison of the predicted function showed that the microbiota of the small intestinal mucosa was enriched for replication and repair, while carbohydrate metabolism was enriched in the microbiota of the large intestinal mucosa. In addition, the relative abundances of amino acid and energy metabolism were significantly higher on days 42 and 70 than on day 1. Our results revealed that the microbial community composition and the dynamics of the intestinal mucosa from birth to rumination in juvenile sika deer, which may provide insights into similar processes in other juvenile ruminants.
Collapse
Affiliation(s)
- Songze Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ruina Mu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yunxi Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Shaoying Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | | | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Kato H, Ambai S, Ikeda F, Abe K, Nakamura S, Yatsunami R. Characterization of a family IV esterase from extremely halophilic archaeon Haloarcula japonica. Extremophiles 2024; 29:7. [PMID: 39625542 PMCID: PMC11614938 DOI: 10.1007/s00792-024-01370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024]
Abstract
The novel esterase gene lipP1, which encodes HjEstP1, was discovered in the genome of the extremely halophilic archaeon Haloarcula japonica. A homology search and sequence alignment revealed that HjEstP1 is a member of family IV esterases with conserved GXSXG and HGGG motifs. lipP1 was expressed in its parental strain, and recombinant HjEstP1 was purified and characterized. Optimal pH and temperature of HjEstP1 were 6.0 and > 60 °C, respectively. HjEstP1 showed higher activity with increasing NaCl concentration, and optimal NaCl concentration was > 4.5 M. Furthermore, HjEstP1 preferentially hydrolyzed pNP and glycerol esters with short chain fatty acids. To our knowledge, this is the first report of an esterase from an extremely halophilic archaeon obtained via homologous expression.
Collapse
Affiliation(s)
- Hiromichi Kato
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Shota Ambai
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Fumiya Ikeda
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Koji Abe
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Satoshi Nakamura
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Rie Yatsunami
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
3
|
Lu M, Schneider D, Daniel R. Metagenomic Screening for Lipolytic Genes Reveals an Ecology-Clustered Distribution Pattern. Front Microbiol 2022; 13:851969. [PMID: 35756004 PMCID: PMC9226776 DOI: 10.3389/fmicb.2022.851969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lipolytic enzymes are one of the most important enzyme types for application in various industrial processes. Despite the continuously increasing demand, only a small portion of the so far encountered lipolytic enzymes exhibit adequate stability and activities for biotechnological applications. To explore novel and/or extremophilic lipolytic enzymes, microbial consortia in two composts at thermophilic stage were analyzed using function-driven and sequence-based metagenomic approaches. Analysis of community composition by amplicon-based 16S rRNA genes and transcripts, and direct metagenome sequencing revealed that the communities of the compost samples were dominated by members of the phyla Actinobacteria, Proteobacteria, Firmicutes, Bacteroidetes, and Chloroflexi. Function-driven screening of the metagenomic libraries constructed from the two samples yielded 115 unique lipolytic enzymes. The family assignment of these enzymes was conducted by analyzing the phylogenetic relationship and generation of a protein sequence similarity network according to an integrated classification system. The sequence-based screening was performed by using a newly developed database, containing a set of profile Hidden Markov models, highly sensitive and specific for detection of lipolytic enzymes. By comparing the lipolytic enzymes identified through both approaches, we demonstrated that the activity-directed complements sequence-based detection, and vice versa. The sequence-based comparative analysis of lipolytic genes regarding diversity, function and taxonomic origin derived from 175 metagenomes indicated significant differences between habitats. Analysis of the prevalent and distinct microbial groups providing the lipolytic genes revealed characteristic patterns and groups driven by ecological factors. The here presented data suggests that the diversity and distribution of lipolytic genes in metagenomes of various habitats are largely constrained by ecological factors.
Collapse
Affiliation(s)
| | | | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg August University of Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Soumya P, Kochupurackal J. An Esterase with Increased Acetone Tolerance from Bacillus subtilis E9 over Expressed in E. coli BL21 Using pTac Bs-est Vector. Mol Biotechnol 2022; 64:814-824. [PMID: 35137334 DOI: 10.1007/s12033-022-00458-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/30/2022] [Indexed: 02/06/2023]
Abstract
Bacillus subtilis E9 was identified as a potential strain producing esterase. The gene coding esterase from B. subtilis E9 was amplified using esterase-specific primers and the sequence was translated in silico. The presence of conserved catalytic triad amino acid residues (His-Ser-Asp/Glu) confirmed the functional nature of the esterase enzyme. Docking studies conducted with modeled protein and the ligand p-nitrophenyl acetate showed that the amino acid residues interacting with the ligand were Ser77, His76, and Gly103. The gene coding for esterase from B. subtilis E9 was cloned into an assembled vector having Tac promoter (pTac), pUC origin of replication, Ni-Histidine residues, ampicillin cassette, and T7 terminator using Golden gate DNA assembly method. The generated pTac Bs-est (4598 bp) recombinant plasmid was transformed and heterologously expressed in Escherichia coli BL21 (DE3) strain. The tagged recombinant protein was purified to yield 43.4% pure protein with specific activity of 772 U/mg. The purified recombinant protein was subjected to peptide sequencing and the identity was confirmed as esterase by peptide tandem mass fragmentation method using the LC-MS/MS analysis. The purified recombinant esterase was found to be organic solvent stable and tolerant up to 5 days retaining around 95% residual activity in 30-90% v/v Acetone. The recombinant esterase expressed in our study was found to exhibit better organic solvent stability and tolerance than compared to the original bacterial esterase from B. subtilis E9, a property which could be explored in the biocatalytic and synthetic transformation reactions for industrial applications.
Collapse
Affiliation(s)
- P Soumya
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | | |
Collapse
|
5
|
A novel acidic and SDS tolerant halophilic lipase from moderate halophile Nesterenkonia sp. strain F: molecular cloning, structure analysis and biochemical characterization. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-01005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
A Novel Carboxylesterase Derived from a Compost Metagenome Exhibiting High Stability and Activity towards High Salinity. Genes (Basel) 2021; 12:genes12010122. [PMID: 33478024 PMCID: PMC7835964 DOI: 10.3390/genes12010122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Halotolerant lipolytic enzymes have gained growing interest, due to potential applications under harsh conditions, such as hypersalinity and presence of organic solvents. In this study, a lipolytic gene, est56, encoding 287 amino acids was identified by functional screening of a compost metagenome. Subsequently, the gene was heterologously expressed, and the recombinant protein (Est56) was purified and characterized. Est56 is a mesophilic (Topt 50 °C) and moderate alkaliphilic (pHopt 8) enzyme, showing high thermostability at 30 and 40 °C. Strikingly, Est56 is halotolerant as it exhibited high activity and stability in the presence of up to 4 M NaCl or KCl. Est56 also displayed enhanced stability against high temperatures (50 and 60 °C) and urea (2, 4, and 6 M) in the presence of NaCl. In addition, the recently reported halotolerant lipolytic enzymes were summarized. Phylogenetic analysis grouped these enzymes into 13 lipolytic protein families. The majority (45%) including Est56 belonged to family IV. To explore the haloadaptation of halotolerant enzymes, the amino acid composition between halotolerant and halophilic enzymes was statistically compared. The most distinctive feature of halophilic from non-halophilic enzymes are the higher content of acidic residues (Asp and Glu), and a lower content of lysine, aliphatic hydrophobic (Leu, Met and Ile) and polar (Asn) residues. The amino acid composition and 3-D structure analysis suggested that the high content of acidic residues (Asp and Glu, 12.2%) and low content of lysine residues (0.7%), as well as the excess of surface-exposed acidic residues might be responsible for the haloadaptation of Est56.
Collapse
|
7
|
Barzkar N, Sohail M, Tamadoni Jahromi S, Gozari M, Poormozaffar S, Nahavandi R, Hafezieh M. Marine Bacterial Esterases: Emerging Biocatalysts for Industrial Applications. Appl Biochem Biotechnol 2021; 193:1187-1214. [PMID: 33411134 DOI: 10.1007/s12010-020-03483-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022]
Abstract
The marine ecosystem has been known to be a significant source of novel enzymes. Esterase enzymes (EC 3.1.1.1) represent a diverse group of hydrolases that catalyze the cleavage and formation of ester bonds. Although esterases are widely distributed among marine organisms, only microbial esterases are of paramount industrial importance. This article discusses the importance of marine microbial esterases, their biochemical and kinetic properties, and their stability under extreme conditions. Since culture-dependent techniques provide limited insights into microbial diversity of the marine ecosystem, therefore, genomics and metagenomics approaches have widely been adopted in search of novel esterases. Additionally, the article also explains industrial applications of marine bacterial esterases particularly for the synthesis of optically pure substances, the preparation of enantiomerically pure drugs, the degradation of human-made plastics and organophosphorus compounds, degradation of the lipophilic components of the ink, and production of short-chain flavor esters.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, 7931674576, Iran.
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | - Mohsen Gozari
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | - Sajjad Poormozaffar
- Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecology Research Center, Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Sciences Research Institute, Bandar-e-Lengeh, Iran
| | - Reza Nahavandi
- Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mahmoud Hafezieh
- Iranian Fisheries Science Research Institute (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
8
|
Characterization of a novel halotolerant esterase from Chromohalobacter canadensis isolated from salt well mine. 3 Biotech 2020; 10:430. [PMID: 32983823 DOI: 10.1007/s13205-020-02420-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
A esterase gene was characterized from a halophilic bacterium Chromohalobacter canadensis which was originally isolated from a salt well mine. Sequence analysis showed that the esterase, named as EstSHJ2, contained active site serine encompassed by a conserved pentapeptide motif (GSSMG). The EstSHJ2 was classified into a new lipase/esterase family by phylogenetic association analysis. Molecular weight of EstSHJ2 was 26 kDa and the preferred substrate was p-NP butyrate. The EstSHJ2 exhibited a maximum activity at 2.5 M NaCl concentration. Intriguingly, the optimum temperature, pH and stability of EstSHJ2 were related to NaCl concentration. At 2.5 M NaCl concentration, the optimum temperature and pH of EstSHJ2 were 65 ℃ and pH 9.0, and enzyme remained 81% active after 80 ℃ treatment for 2 h. Additionally, the EstSHJ2 showed strong tolerance to metal ions and organic solvents. Among these, 10 mM K+, Ca2+ , Mg2+ and 30% hexane, benzene, toluene has significantly improved activity of EstSHJ2. The EstSHJ2 was the first reported esterase from Chromohalobacter canadensis, and may carry considerable potential for industrial applications under extreme conditions.
Collapse
|
9
|
Shen Y, Li Z, Huo YY, Bao L, Gao B, Xiao P, Hu X, Xu XW, Li J. Structural and Functional Insights Into CmGH1, a Novel GH39 Family β-Glucosidase From Deep-Sea Bacterium. Front Microbiol 2019; 10:2922. [PMID: 31921083 PMCID: PMC6933502 DOI: 10.3389/fmicb.2019.02922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/04/2019] [Indexed: 01/07/2023] Open
Abstract
Glucosidases play key roles in many diseases and are limiting enzymes during cellulose degradation, which is an important part of global carbon cycle. Here, we identified a novel β-glucosidase, CmGH1, isolated from marine bacterium Croceicoccus marinus E4A9T. In spite of its high sequence and structural similarity with β-xylosidase family members, CmGH1 had enzymatic activity toward p-nitrophenyl-β-D-glucopyranoside (p-NPG) and cellobiose. The Km and Kcat values of CmGH1 toward p-NPG were 0.332 ± 0.038 mM and 2.15 ± 0.081 min–1, respectively. CmGH1 was tolerant to high concentration salts, detergents, as well as many kinds of organic solvents. The crystal structure of CmGH1 was resolved with a 1.8 Å resolution, which showed that CmGH1 was composed of a canonical (α/β)8-barrel catalytic domain and an auxiliary β-sandwich domain. Although no canonical catalytic triad residues were found in CmGH1, structural comparison and mutagenesis analysis suggested that residues Gln157 and Tyr264 of CmGH1 were the active sites. Mutant Q157E significantly increased its hydrolase activity up to 15-fold, whereas Y264E totally abolished its enzymatic activity. These results might provide new insights into understanding the different catalytic mechanism during evolution for β-glucosidases and β-xylosidases.
Collapse
Affiliation(s)
- Yanfang Shen
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences, Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Zhengyang Li
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences, Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Ying-Yi Huo
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Luyao Bao
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences, Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Baocai Gao
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences, Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Peng Xiao
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences, Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Xiaojian Hu
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences, Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences, Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Mesbah NM. Covalent immobilization of a halophilic, alkalithermostable lipase LipR2 on Florisil® nanoparticles for production of alkyl levulinates. Arch Biochem Biophys 2019; 667:22-29. [DOI: 10.1016/j.abb.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/05/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
|
11
|
Sukul P, Lupilov N, Leichert LI. Characterization of ML-005, a Novel Metaproteomics-Derived Esterase. Front Microbiol 2018; 9:1925. [PMID: 30210461 PMCID: PMC6119806 DOI: 10.3389/fmicb.2018.01925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 01/06/2023] Open
Abstract
A novel gene encoding for a lipolytic enzyme, designated ML-005, was recently identified using a functional metaproteomics approach. We heterologously expressed this protein in Escherichia coli and biochemically characterized it. ML-005 exhibited lipolytic activity toward short-chained substrates with the preferred substrate being p-nitrophenyl-butyrate, suggesting that ML-005 is an esterase. According to homology analysis and site-directed mutagenesis, the catalytic triad of the enzyme was identified as Ser-99, Asp-164, and His-191. Its optimal pH was determined to be at pH 8. Optimal activity was observed at 45°C. It also exhibited temperature, pH and salt tolerance. Residual relative activity after incubating at 50–60°C for 360 min was above 80% of its initial activity. It showed tolerance over a broad range of pH (5–12) and retained most of its initial activity. Furthermore, incubating ML-005 in 1 – 5M NaCl solution had negligible effect on its activity. DTT, EDTA, and ß-mercaptoethanol had no significant effect on ML-005’s activity. However, addition of PMSF led to almost complete inactivation consistent with ML-005 being a serine hydrolase. ML-005 remains stable in the presence of a range of metal ions, but addition of Cu2+ significantly reduces its relative activity. Organic solvents have an inhibitory effect on ML-005, but it retained 21% of activity in 10% methanol. SDS had the most pronounced inhibitory effect on ML-005 among all detergents tested and completely inactivated it. Furthermore, the Vmax of ML-005 was determined to be 59.8 μM/min along with a Km of 137.9 μM. The kcat of ML-005 is 26 s-1 and kcat/Km is 1.88 × 105 M-1 s-1.
Collapse
Affiliation(s)
- Premankur Sukul
- Department of Microbial Biochemistry, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Natalie Lupilov
- Department of Microbial Biochemistry, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Lars I Leichert
- Department of Microbial Biochemistry, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
12
|
Wang Y, Xu Y, Zhang Y, Sun A, Hu Y. Functional characterization of salt-tolerant microbial esterase WDEst17 and its use in the generation of optically pure ethyl (R)-3-hydroxybutyrate. Chirality 2018; 30:769-776. [PMID: 29573466 DOI: 10.1002/chir.22847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 11/05/2022]
Abstract
The two enantiomers of ethyl 3-hydroxybutyrate are important intermediates for the synthesis of a great variety of valuable chiral drugs. The preparation of chiral drug intermediates through kinetic resolution reactions catalyzed by esterases/lipases has been demonstrated to be an efficient and environmentally friendly method. We previously functionally characterized microbial esterase PHE21 and used PHE21 as a biocatalyst to generate optically pure ethyl (S)-3-hydroxybutyrate. Herein, we also functionally characterized one novel salt-tolerant microbial esterase WDEst17 from the genome of Dactylosporangium aurantiacum subsp. Hamdenensis NRRL 18085. Esterase WDEst17 was further developed as an efficient biocatalyst to generate (R)-3-hydroxybutyrate, an important chiral drug intermediate, with the enantiomeric excess being 99% and the conversion rate being 65.05%, respectively, after process optimization. Notably, the enantio-selectivity of esterase WDEst17 was opposite than that of esterase PHE21. The identification of esterases WDEst17 and PHE21 through genome mining of microorganisms provides useful biocatalysts for the preparation of valuable chiral drug intermediates.
Collapse
Affiliation(s)
- Yilong Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yongkai Xu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yun Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Aijun Sun
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yunfeng Hu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Gao H, Li C, Bandikari R, Liu Z, Hu N, Yong Q. A novel cold-adapted esterase from Enterobacter cloacae: Characterization and improvement of its activity and thermostability via the site of Tyr193Cys. Microb Cell Fact 2018; 17:45. [PMID: 29554914 PMCID: PMC5858142 DOI: 10.1186/s12934-018-0885-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/26/2018] [Indexed: 11/10/2022] Open
Abstract
Background In industries lipolytic reactions occur in insensitive conditions such as high temperature thus novel stout esterases with unique properties are attracts to the industrial application. Protein engineering is the tool to obtain desirable characters of enzymes. A novel esterase gene was isolated from South China Sea and subjected to a random mutagenesis and site directed mutagenesis for higher activity and thermo-stability compared to wild type. Results A novel esterase showed the highest hydrolytic activity against p-nitrophenyl acetate (pNPA, C2) and the optimal activity at 40 °C and pH 8.5. It was a cold-adapted enzyme and retained approximately 40% of its maximum activity at 0 °C. A mutant, with higher activity and thermo-stability was obtained by random mutagenesis. Kinetic analysis indicated that the mutant Val29Ala/Tyr193Cys shown 43.5% decrease in Km, 2.6-fold increase in Kcat, and 4.7-fold increase in Kcat/Km relative to the wild type. Single mutants V29A and Y193C were constructed and their kinetic parameters were measured. The results showed that the values of Km, Kcat, and Kcat/Km of V29A were similar to those of the wild type while Y193C showed 52.7% decrease in Km, 2.7-fold increase in Kcat, and 5.6-fold increase in Kcat/Km compared with the wild type. The 3-D structure and docking analysis revealed that the replacement of Tyr by Cys could enlarge the binding pocket. Moreover Y193C also showed a better thermo-stability for the reason its higher hydrophobicity and retained 67% relative activity after incubation for 3 h at 50 °C. Conclusions The superior quality of modified esterase suggested it has great potential application in extreme conditions and the mutational work recommended that important information for the study of esterase structure and function. Electronic supplementary material The online version of this article (10.1186/s12934-018-0885-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haofeng Gao
- College of Light Industry Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210018, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211800, China
| | - Chanjuan Li
- College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ramesh Bandikari
- College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziduo Liu
- College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211800, China.
| | - Qiang Yong
- College of Light Industry Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210018, China.
| |
Collapse
|
14
|
Huo YY, Rong Z, Jian SL, Xu CD, Li J, Xu XW. A Novel Halotolerant Thermoalkaliphilic Esterase from Marine Bacterium Erythrobacter seohaensis SW-135. Front Microbiol 2017; 8:2315. [PMID: 29213264 PMCID: PMC5702849 DOI: 10.3389/fmicb.2017.02315] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023] Open
Abstract
A novel esterase gene, e69, was cloned from Erythrobacter seohaensis SW-135, which was isolated from a tidal flat sediment of the Yellow Sea in Korea. This gene is 825 bp in length and codes for a 29.54 kDa protein containing 274 amino acids. Phylogenetic analysis showed that E69 is a new member of the bacterial lipolytic enzyme family IV. This enzyme exhibited the highest level of activity toward p-nitrophenyl (NP) butyrate but little or no activity toward the other p-NP esters tested. The optimum temperature and pH of the catalytic activity of E69 were 60°C and pH 10.5, respectively. The enzyme exhibited stable activity over a wide range of alkaline pH values (7.5-9.5). In addition, E69 was found to be a halotolerant esterase as it exhibited the highest hydrolytic activity in the presence of 0.5 M NaCl and was still active in the presence of 3 M NaCl. Moreover, it possessed some degree of tolerance to Triton X-100 and several organic solvents. Through homology modeling and comparison with other esterases, it was suggested that the absence of the cap domain and its narrow substrate-binding pocket might be responsible for its narrow substrate specificity. Sequence and structural analysis results suggested that its high ratio of negatively to positively charged residues, large hydrophobic surface area, and negative electrostatic potential on the surface may be responsible for its alkaline adaptation. The results of this study provide insight into marine alkaliphilic esterases, and the unique properties of E69 make it a promising candidate as a biocatalyst for industrial applications.
Collapse
Affiliation(s)
- Ying-Yi Huo
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Zhen Rong
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Shu-Ling Jian
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Cao-Di Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| |
Collapse
|
15
|
Wang C, Guo G, Huang Y, Hao H, Wang H. Salt Adaptation and Evolutionary Implication of a Nah-related PAHs Dioxygenase cloned from a Halophilic Phenanthrene Degrading Consortium. Sci Rep 2017; 7:12525. [PMID: 28970580 PMCID: PMC5624874 DOI: 10.1038/s41598-017-12979-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/14/2017] [Indexed: 12/05/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pollutions often occur in marine and other saline environment, largely due to anthropogenic activities. However, study of the PAHs-degradation genotypes in halophiles is limited, compared with the mesophilic terrestrial PAHs degraders. In this study, a bacterial consortium (CY-1) was enriched from saline soil contaminated with crude oil using phenanthrene as the sole carbon source at 10% salinity. CY-1 was dominated by the moderate halophilic Marinobacter species, and its dominant PAHs ring-hydroxylating dioxygenase (RHD) genotypes shared high identity to the classic nah-related RHDs found in the mesophilic species. Further cloning of a 5.6-kb gene cluster from CY-1 unveiled the existence of a new type of PAHs degradation gene cluster (hpah), which most probably evolves from the nah-related gene clusters. Expression of the RHD in this gene cluster in E. coli lead to the discovery of its prominent salt-tolerant properties compared with two RHDs from mesophiles. As a common structural feature shared by all halophilic and halotolerant enzymes, higher abundance of acidic amino acids was also found on the surface of this RHD than its closest nah-related alleles. These results suggest evolution towards saline adaptation occurred after horizontal transfer of this hpah gene cluster into the halophiles.
Collapse
Affiliation(s)
- Chongyang Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Guang Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.,School of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Yong Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Han Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
16
|
Structural and Mechanistic Insights into the Improvement of the Halotolerance of a Marine Microbial Esterase by Increasing Intra- and Interdomain Hydrophobic Interactions. Appl Environ Microbiol 2017; 83:AEM.01286-17. [PMID: 28733281 DOI: 10.1128/aem.01286-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/12/2017] [Indexed: 11/20/2022] Open
Abstract
Halotolerant enzymes are beneficial for industrial processes requiring high salt concentrations and low water activity. Most halophilic proteins are evolved to have reduced hydrophobic interactions on the surface and in the hydrophobic cores for their haloadaptation. However, in this study, we improved the halotolerance of a thermolabile esterase, E40, by increasing intraprotein hydrophobic interactions. E40 was quite unstable in buffers containing more than 0.3 M NaCl, and its kcat and substrate affinity were both significantly reduced in 0.5 M NaCl. By introducing hydrophobic residues in loop 1 of the CAP domain and/or α7 of the catalytic domain in E40, we obtained several mutants with improved halotolerance, and the M3 S202W I203F mutant was the most halotolerant. ("M3" represents a mutation in loop 1 of the CAP domain in which residues R22-K23-T24 of E40 are replaced by residues Y22-K23-H24-L25-S26 of Est2.) Then we solved the crystal structures of the S202W I203F and M3 S202W I203F mutants to reveal the structural basis for their improved halotolerance. Structural analysis revealed that the introduction of hydrophobic residues W202 and F203 in α7 significantly improved E40 halotolerance by strengthening intradomain hydrophobic interactions of F203 with W202 and other residues in the catalytic domain. By further introducing hydrophobic residues in loop 1, the M3 S202W I203F mutant became more rigid and halotolerant due to the formation of additional interdomain hydrophobic interactions between the introduced Y22 in loop 1 and W204 in α7. These results indicate that increasing intraprotein hydrophobic interactions is also a way to improve the halotolerance of enzymes with industrial potential under high-salt conditions.IMPORTANCE Esterases and lipases for industrial application are often subjected to harsh conditions such as high salt concentrations, low water activity, and the presence of organic solvents. However, reports on halotolerant esterases and lipases are limited, and the underlying mechanism for their halotolerance is still unclear due to the lack of structures. In this study, we focused on the improvement of the halotolerance of a salt-sensitive esterase, E40, and the underlying mechanism. The halotolerance of E40 was significantly improved by introducing hydrophobic residues. Comparative structural analysis of E40 and its halotolerant mutants revealed that increased intraprotein hydrophobic interactions make these mutants more rigid and more stable than the wild type against high concentrations of salts. This study shows a new way to improve enzyme halotolerance, which is helpful for protein engineering of salt-sensitive enzymes.
Collapse
|
17
|
Memarpoor-Yazdi M, Karbalaei-Heidari HR, Khajeh K. Production of the renewable extremophile lipase: Valuable biocatalyst with potential usage in food industry. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2016.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Nguyen TH, Nguyen VD. Characterization and Applications of Marine Microbial Enzymes in Biotechnology and Probiotics for Animal Health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 80:37-74. [PMID: 28215328 DOI: 10.1016/bs.afnr.2016.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Marine microorganisms have been recognized as potential sources of novel enzymes because they are relatively more stable than the corresponding enzymes derived from plants and animals. Enzymes from marine microorganisms also differ from homologous enzymes in terrestrial microorganisms based on salinity, pressure, temperature, and lighting conditions. Marine microbial enzymes can be used in diverse industrial applications. This chapter will focus on the biotechnological applications of marine enzymes and also their use as a tool of marine probiotics to improve host digestion (food digestion, food absorption, and mucus utilization) and cleave molecular signals involved in quorum sensing in pathogens to control disease in aquaculture.
Collapse
Affiliation(s)
- T H Nguyen
- Faculty of Food Technology, Nha Trang University, Nha Trang, Vietnam.
| | - V D Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, Nha Trang, Vietnam.
| |
Collapse
|
19
|
Paidimuddala B, Krishna Aradhyam G, N. Gummadi S. A halotolerant aldose reductase from Debaryomyces nepalensis: gene isolation, overexpression and biochemical characterization. RSC Adv 2017. [DOI: 10.1039/c7ra01697b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aldose reductase (AR) catalyzes the conversion of aldoses to polyols, the natural sugar substitutes. Here we provide gene sequence and characteristics of the first-ever halotolerant AR which could be exploited as a potential biocatalyst.
Collapse
Affiliation(s)
- Bhaskar Paidimuddala
- Applied and Industrial Microbiology Laboratory
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology Madras
- Chennai 600 036
| | - Gopala Krishna Aradhyam
- Applied and Industrial Microbiology Laboratory
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology Madras
- Chennai 600 036
| | - Sathyanarayana N. Gummadi
- Applied and Industrial Microbiology Laboratory
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology Madras
- Chennai 600 036
| |
Collapse
|
20
|
Hang Y, Ran S, Wang X, Jiao J, Wang S, Liu Z. Mutational analysis and stability characterization of a novel esterase of lipolytic enzyme family VI from Shewanella sp. Int J Biol Macromol 2016; 93:655-664. [PMID: 27632949 DOI: 10.1016/j.ijbiomac.2016.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/19/2016] [Accepted: 09/11/2016] [Indexed: 11/17/2022]
Abstract
Esterases are widely used in different industries. Here, a novel esterase, Esth, with low identity with previously reported esterases, was identified and characterized. The results showed that Esth was a cold-adapted esterase and retained 50% of its maximum activity at 0°C. Besides, Esth showed great activity and stability in high concentrations of NaCl. When treated with some organic solvents, detergents and metal ions, Esth showed high activity as well. The kcat/Km value of Esth was 29.5s-1mM-1, suggesting that it has higher catalytic efficiency than all the previously reported esterases from the same family, lipolytic enzyme family VI. The structural modeling showed that changing Ala129 into Gly would form a new hydrogen bond between ser125 and Gly129 and make theα-helix longer, which might influence on the thermostability of enzymes (Kumar, 2000). To confirm this, the mutant EsthA129G was obtained by site-directed mutagenesis. The result indicated that EsthA129G retained over 70% of the activity versus 12% for Esth after incubation at 55°C for 120min, showed a nearly six fold increase when compared with wild type. Overall, Esth shows a potential application prospect in extreme conditions and the mutation research can provide some structural information about thermostable enzymes.
Collapse
Affiliation(s)
- Yian Hang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shi Ran
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiangyu Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jingwen Jiao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shunyao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ziduo Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
21
|
Wang Y, Zhang Y, Sun A, Hu Y. Characterization of a novel marine microbial esterase and its use to make D-methyl lactate. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(16)62495-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Immobilization of a novel cold active esterase onto Fe3O4∼cellulose nano-composite enhances catalytic properties. Int J Biol Macromol 2016; 87:488-97. [DOI: 10.1016/j.ijbiomac.2016.03.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/27/2023]
|
23
|
Characterization of a novel cold active and salt tolerant esterase from Zunongwangia profunda. Enzyme Microb Technol 2016; 85:1-11. [DOI: 10.1016/j.enzmictec.2015.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 12/18/2015] [Accepted: 12/29/2015] [Indexed: 01/13/2023]
|
24
|
Jiang H, Zhang S, Gao H, Hu N. Characterization of a cold-active esterase from Serratia sp. and improvement of thermostability by directed evolution. BMC Biotechnol 2016; 16:7. [PMID: 26800680 PMCID: PMC4722774 DOI: 10.1186/s12896-016-0235-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/13/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In recent years, cold-active esterases have received increased attention due to their attractive properties for some industrial applications such as high catalytic activity at low temperatures. RESULTS An esterase-encoding gene (estS, 909 bp) from Serratia sp. was identified, cloned and expressed in Escherichia coli DE3 (BL21). The estS encoded a protein (EstS) of 302 amino acids with a predicted molecular weight of 32.5 kDa. It showed the highest activity at 10 °C and pH 8.5. EstS was cold active and retained ~92 % of its original activity at 0 °C. Thermal inactivation analysis showed that the T1/2 value of EstS was 50 min at 50 °C (residual activity 41.23 %) after 1 h incubation. EstS is also quite stable in high salt conditions and displayed better catalytic activity in the presence of 4 M NaCl. To improve the thermo-stability of EstS, variants of estS gene were created by error-prone PCR. A mutant 1-D5 (A43V, R116W, D147N) that showed higher thermo-stability than its wild type predecessor was selected. 1-D5 showed enhanced T1/2 of 70 min at 50 °C and retained 63.29 % of activity after incubation at 50 °C for 60 min, which were about 22 % higher than the wild type (WT). CD spectrum showed that the secondary structure of WT and 1-D5 are more or less similar, but an increase in β-sheets was recorded, which enhanced the thermostability of mutant protein. CONCLUSION EstS was a novel cold-active and salt-tolerant esterase and half-life of mutant 1-D5 was enhanced by 1.4 times compared with WT. The features of EstS are interesting and can be exploited for commercial applications. The results have also provided useful information about the structure and function of Est protein.
Collapse
Affiliation(s)
- Huang Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China.
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Shaowei Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China.
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Haofeng Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China.
| | - Nan Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China.
| |
Collapse
|
25
|
Pelagibacterium lixinzhangensis sp. nov., a Novel Member of the Genus Pelagibacterium. Curr Microbiol 2016; 72:551-6. [DOI: 10.1007/s00284-016-0989-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/11/2015] [Indexed: 12/16/2022]
|
26
|
Guo G, Fang T, Wang C, Huang Y, Tian F, Cui Q, Wang H. Isolation and characterization of two novel halotolerant Catechol 2, 3-dioxygenases from a halophilic bacterial consortium. Sci Rep 2015; 5:17603. [PMID: 26621792 PMCID: PMC4664950 DOI: 10.1038/srep17603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 11/03/2015] [Indexed: 02/08/2023] Open
Abstract
Study of enzymes in halophiles will help to understand the mechanism of aromatic hydrocarbons degradation in saline environment. In this study, two novel catechol 2,3-dioxygenases (C23O1 and C23O2) were cloned and overexpressed from a halophilic bacterial consortium enriched from an oil-contaminated saline soil. Phylogenetic analysis indicated that the novel C23Os and their relatives formed a new branch in subfamily I.2.A of extradiol dioxygenases and the sequence differences were further analyzed by amino acid sequence alignment. Two enzymes with the halotolerant feature were active over a range of 0–30% salinity and they performed more stable at high salinity than in the absence of salt. Surface electrostatic potential and amino acids composition calculation suggested high acidic residues content, accounting for their tolerance to high salinity. Moreover, two enzymes were further characterized. The enzymes activity both increased in the presence of Fe3+, Fe2+, Cu2+ and Al3+ and showed no significant inhibition by other tested metal ions. The optimal temperatures for the C23Os were 40 °C and 60 °C and their best substrates were catechol and 4-methylcatechol respectively. As the firstly isolated and characterized catechol dioxygenases from halophiles, the two halotolerant C23Os presented novel characteristics suggesting their potential application in aromatic hydrocarbons biodegradation.
Collapse
Affiliation(s)
- Guang Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tingting Fang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chongyang Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yong Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fang Tian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qijia Cui
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
Characterization of a novel metallo-β-lactamases fold hydrolase from Pelagibacterium halotolerans, a marine halotolerant bacterium isolated from East China Sea. Extremophiles 2015; 20:37-44. [PMID: 26560315 DOI: 10.1007/s00792-015-0795-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
In this study, a novel metallo-β-lactamases fold hydrolase PH-1 was identified from Pelagibacterium halotolerans B2(T). This novel member of the family Hyphomicrobiaceae was isolated from the East China Sea. In silico analysis demonstrated that PH-1 and its relative homologues cluster in a unique branch and constitute a new subgroup among MBLs. PH-1 was cloned and overexpressed in Escherichia coli BL21 in a soluble form. SDS-PAGE, MALDI-TOF/TOF-MS, and size-exclusion chromatography analysis demonstrated that the PH-1 was a monomer with molecular weight of about 29 kDa. Substrate specificity study showed PH-1 preferred penicillin type β-lactams and exhibited maximum activity toward penicillin-G. Additionally, our experiments also revealed that PH-1 was a halotolerant enzyme since it is active under 4 M NaCl. The enzyme activity of PH-1 was negatively affected by 1 mM Mn(2+) and EDTA. These observations lay a foundation for further study of MBLs from marine bacterium.
Collapse
|
28
|
Yan QJ, Yang SQ, Duan XJ, Xu HB, Liu Y, Jiang ZQ. Characterization of a novel hormone-sensitive lipase family esterase from Rhizomucor miehei with tertiary alcohol hydrolysis activity. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Molecular bases of protein halotolerance. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:850-8. [DOI: 10.1016/j.bbapap.2014.02.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 02/04/2023]
|
30
|
Xin L, Hui-Ying Y. Purification and characterization of an extracellular esterase with organic solvent tolerance from a halotolerant isolate, Salimicrobium sp. LY19. BMC Biotechnol 2013; 13:108. [PMID: 24325447 PMCID: PMC4029450 DOI: 10.1186/1472-6750-13-108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 10/29/2013] [Indexed: 11/25/2022] Open
Abstract
Background Halotolerant bacteria are excellent sources for selecting novel enzymes. Being intrinsically stable and active under high salinities, enzymes from these prokaryotes have evolved to function optimally under extreme conditions, making them robust biocatalysts with potential applications in harsh industrial processes. Results A halotolerant strain LY19 showing lipolytic activity was isolated from saline soil of Yuncheng Salt Lake, China. It was identified as belonging to the genus of Salimicrobium by 16S rRNA gene sequence analysis. The extracellular enzyme was purified to homogeneity with molecular mass of 57 kDa by SDS-PAGE. Substrate specificity test revealed that the enzyme preferred short-chain p-nitrophenyl esters and exhibited maximum activity towards p-nitrophenyl butyrate (p-NPB), indicating an esterase activity. The esterase was highly active and stable over broad temperature (20°C-70°C), pH (7.0-10.0) and NaCl concentration (2.5%-25%) ranges, with an optimum at 50°C, pH 7.0 and 5% NaCl. Significant inhibition of the esterase was shown by ethylenediaminetetraacetic acid (EDTA), phenylmethylsulfonyl fluoride (PMSF) and phenylarsine oxide (PAO), which indicated that it was a metalloenzyme with serine and cysteine residues essential for enzyme activity. Moreover, the esterase displayed high activity and stability in the presence of hydrophobic organic solvents with log Pow ≥ 0.88 than in the absence of an organic solvent or in the presence of hydrophilic solvents. Conclusions Results from the present study indicated the novel extracellular esterase from Salimicrobium sp. LY19 exhibited thermostable, alkali-stable, halotolerant and organic solvent-tolerant properties. These features led us to conclude that the esterase may have considerable potential for industrial applications in organic synthesis reactions.
Collapse
Affiliation(s)
- Li Xin
- Life Science College, Yuncheng University, 333 Hedong East Street, Yuncheng 044000, China.
| | | |
Collapse
|
31
|
Biotechnological applications of halophilic lipases and thioesterases. Appl Microbiol Biotechnol 2013; 98:1011-21. [DOI: 10.1007/s00253-013-5417-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 12/13/2022]
|
32
|
A novel esterase from a psychrotrophic bacterium Psychrobacter celer 3Pb1 showed cold-adaptation and salt-tolerance. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Cloning, expression and characterization of a new enantioselective esterase from a marine bacterium Pelagibacterium halotolerans B2T. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Liu Y, Xu H, Yan Q, Yang S, Duan X, Jiang Z. Biochemical characterization of a first fungal esterase from Rhizomucor miehei showing high efficiency of ester synthesis. PLoS One 2013; 8:e77856. [PMID: 24204998 PMCID: PMC3813734 DOI: 10.1371/journal.pone.0077856] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/03/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Esterases with excellent merits suitable for commercial use in ester production field are still insufficient. The aim of this research is to advance our understanding by seeking for more unusual esterases and revealing their characterizations for ester synthesis. METHODOLOGY/PRINCIPAL FINDINGS A novel esterase-encoding gene from Rhizomucor miehei (RmEstA) was cloned and expressed in Escherichia coli. Sequence analysis revealed a 975-bp ORF encoding a 324-amino-acid polypeptide belonging to the hormone-sensitive lipase (HSL) family IV and showing highest similarity (44%) to the Paenibacillus mucilaginosus esterase/lipase. Recombinant RmEstA was purified to homogeneity: it was 34 kDa by SDS-PAGE and showed optimal pH and temperature of 6.5 and 45°C, respectively. The enzyme was stable to 50°C, under a broad pH range (5.0-10.6). RmEstA exhibited broad substrate specificity toward p-nitrophenol esters and short-acyl-chain triglycerols, with highest activities (1,480 U mg(-1) and 228 U mg(-1)) for p-nitrophenyl hexanoate and tributyrin, respectively. RmEstA efficiently synthesized butyl butyrate (92% conversion yield) when immobilized on AOT-based organogel. CONCLUSION RmEstA has great potential for industrial applications. RmEstA is the first reported esterase from Rhizomucor miehei.
Collapse
Affiliation(s)
- Yu Liu
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing, China
| | - Haibo Xu
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiaojuan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing, China
| | - Shaoqing Yang
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaojie Duan
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhengqiang Jiang
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Synthesis of frataxin genes by direct assembly of serial deoxyoligonucleotide primers and its expression in Escherichia coli. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|