1
|
Zhang Q, Chen Y, Duan L, Dong L, Wang S. Design Glutamate Dehydrogenase for Nonaqueous System by Motifs Reassembly and Interaction Network Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19931-19939. [PMID: 39222309 DOI: 10.1021/acs.jafc.4c02995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Glutamate dehydrogenases (GDH) serve as the key regulated enzyme that links protein and carbohydrate metabolism. Combined with motif reassembly and mutation, novel GDHs were designed. Motif reassembly of thermophilic GDH and malate dehydrogenase aims to overcome stability and activity tradeoff in nonaqueous systems. Structural compatibility and dynamic cooperation of the designed AaDHs were studied by molecular dynamics simulation. Furthermore, multipoint mutations improved its catalytic activity for unnatural substrates. Amino acid interaction network analysis indicated that the high density of hydrogen-bonded salt bridges is beneficial to the stability. Finally, the experimental verification determines the kinetics of AaDHs in a nonaqueous system. The activity of Aa05 was increased by 1.78-fold with ionic liquid [EMIM]BF4. This study presents the strategy of a combination of rigid motif assembly and mutations of active sites for robust dehydrogenases with high activity in the nonaqueous system, which overcomes the activity-stability tradeoff effect.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuxin Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingxuan Duan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingling Dong
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shizhen Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
2
|
Kaličanin N, Balaž AM, Prodanović O, Prodanović R. Heterologous Expression and Partial Characterization of a Putative Opine Dehydrogenase from a Metagenomic Sequence of Desulfohalobium retbaense. Chembiochem 2023; 24:e202300414. [PMID: 37531452 DOI: 10.1002/cbic.202300414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
The aim of this research was to prove the function of the putative opine dehydrogenase from Desulfohalobium retbaense and to characterize the enzyme in terms of functional and kinetic parameters. A putative opine dehydrogenase was identified from a metagenomic library by a sequence-based technique search of the metagenomic library, and afterward was successfully heterologously produced in Escherichia coli. In order to examine its potential for applications in the synthesis of secondary amines, first the substrate specificity of the enzyme towards different amino donors and amino acceptors was determined. The highest affinity was observed towards small amino acids, preferentially L-alanine, and when it comes to α-keto acids, pyruvate proved to be a preferential amino acceptor. The highest activity was observed at pH 6.5 in the absence of salts. The enzyme showed remarkable stability in a wide range of experimental conditions, such as broad pH stability (from 6.0-11.0 after 30 min incubation in buffers at a certain pH), stability in the presence of NaCl up to 3.0 M for 24 h, it retained 80 % of the initial activity after 1 h incubation at 45 °C, and 65 % of the initial activity after 24 h incubation in 30 % dimethyl sulfoxide.
Collapse
Affiliation(s)
- Nevena Kaličanin
- University of Belgrade-Institute of Chemistry Technology and Metallurgy National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia
| | - Ana Marija Balaž
- University of Belgrade-Institute of Chemistry Technology and Metallurgy National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia
- Department of Otorhinolaryngology Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany
| | - Olivera Prodanović
- University of Belgrade-Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Radivoje Prodanović
- Department of Biochemistry, University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| |
Collapse
|
3
|
Wang S, Lei H, Ji Z. Exploring Oxidoreductases from Extremophiles for Biosynthesis in a Non-Aqueous System. Int J Mol Sci 2023; 24:ijms24076396. [PMID: 37047370 PMCID: PMC10094897 DOI: 10.3390/ijms24076396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Organic solvent tolerant oxidoreductases are significant for both scientific research and biomanufacturing. However, it is really challenging to obtain oxidoreductases due to the shortages of natural resources and the difficulty to obtained it via protein modification. This review summarizes the recent advances in gene mining and structure-functional study of oxidoreductases from extremophiles for non-aqueous reaction systems. First, new strategies combining genome mining with bioinformatics provide new insights to the discovery and identification of novel extreme oxidoreductases. Second, analysis from the perspectives of amino acid interaction networks explain the organic solvent tolerant mechanism, which regulate the discrete structure-functional properties of extreme oxidoreductases. Third, further study by conservation and co-evolution analysis of extreme oxidoreductases provides new perspectives and strategies for designing robust enzymes for an organic media reaction system. Furthermore, the challenges and opportunities in designing biocatalysis non-aqueous systems are highlighted.
Collapse
Affiliation(s)
- Shizhen Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen 361005, China
| | - Hangbin Lei
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhehui Ji
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Hua L, Qianqian B, Jianfeng Z, Yinbiao X, Shengyu Y, Weishi X, Yang S, Yupeng L. Directed evolution engineering to improve activity of glucose dehydrogenase by increasing pocket hydrophobicity. Front Microbiol 2022; 13:1044226. [DOI: 10.3389/fmicb.2022.1044226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
Glucose dehydrogenase (GDH) is a NAD(P)+ dependent oxidoreductase, which is useful in glucose determination kits, glucose biosensors, cofactor regeneration, and biofuel cells. However, the low efficiency of the catalysis hinders the use of GDH in industrial applications. In this study, an analysis of interactions between eight GDH mutants and NADP+ is powered by AlphaFold2 and Discovery Studio 3.0. The docking results showed that more hydrogen bonds formed between mutants, such as P45A and NADP+, which indicated that these mutants had the potential for high catalytic efficiency. Subsequently, we verified all the mutants by site-directed mutagenesis. It was notable that the enzyme activity of mutant P45A was 1829 U/mg, an improvement of 28-fold compared to wild-type GDH. We predicted the hydrophobicity of the protein-ligand complexes, which was confirmed by an 8-anilino-1-naphthalenesulphonic acid fluorescent probe. The following order of increasing hydrophobicity index was deduced: GDH < N46E < F155Y < P45A, which suggested that the enzyme activity of GDH is positively related to its pocket hydrophobicity. Furthermore, P45A still showed better catalytic ability in organic solvents, reaching 692 U/mg in 10% isopropanol, which was 19-fold that of the wild-type GDH. However, its substrate affinity was affected by organic solvents. This study provides a good theoretical foundation for further improving the catalytic efficiency of GDH.
Collapse
|
5
|
Mital S, Christie G, Dikicioglu D. Recombinant expression of insoluble enzymes in Escherichia coli: a systematic review of experimental design and its manufacturing implications. Microb Cell Fact 2021; 20:208. [PMID: 34717620 PMCID: PMC8557517 DOI: 10.1186/s12934-021-01698-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
Recombinant enzyme expression in Escherichia coli is one of the most popular methods to produce bulk concentrations of protein product. However, this method is often limited by the inadvertent formation of inclusion bodies. Our analysis systematically reviews literature from 2010 to 2021 and details the methods and strategies researchers have utilized for expression of difficult to express (DtE), industrially relevant recombinant enzymes in E. coli expression strains. Our review identifies an absence of a coherent strategy with disparate practices being used to promote solubility. We discuss the potential to approach recombinant expression systematically, with the aid of modern bioinformatics, modelling, and ‘omics’ based systems-level analysis techniques to provide a structured, holistic approach. Our analysis also identifies potential gaps in the methods used to report metadata in publications and the impact on the reproducibility and growth of the research in this field.
Collapse
Affiliation(s)
- Suraj Mital
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Duygu Dikicioglu
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
6
|
Espina G, Atalah J, Blamey JM. Extremophilic Oxidoreductases for the Industry: Five Successful Examples With Promising Projections. Front Bioeng Biotechnol 2021; 9:710035. [PMID: 34458243 PMCID: PMC8387880 DOI: 10.3389/fbioe.2021.710035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/30/2021] [Indexed: 11/29/2022] Open
Abstract
In a global context where the development of more environmentally conscious technologies is an urgent need, the demand for enzymes for industrial processes is on the rise. Compared to conventional chemical catalysts, the implementation of biocatalysis presents important benefits including higher selectivity, increased sustainability, reduction in operating costs and low toxicity, which translate into cleaner production processes, lower environmental impact as well as increasing the safety of the operating staff. Most of the currently available commercial enzymes are of mesophilic origin, displaying optimal activity in narrow ranges of conditions, which limits their actual application under industrial settings. For this reason, enzymes from extremophilic microorganisms stand out for their specific characteristics, showing higher stability, activity and robustness than their mesophilic counterparts. Their unique structural adaptations allow them to resist denaturation at high temperatures and salinity, remain active at low temperatures, function at extremely acidic or alkaline pHs and high pressure, and participate in reactions in organic solvents and unconventional media. Because of the increased interest to replace chemical catalysts, the global enzymes market is continuously growing, with hydrolases being the most prominent type of enzymes, holding approximately two-third share, followed by oxidoreductases. The latter enzymes catalyze electron transfer reactions and are one of the most abundant classes of enzymes within cells. They hold a significant industrial potential, especially those from extremophiles, as their applications are multifold. In this article we aim to review the properties and potential applications of five different types of extremophilic oxidoreductases: laccases, hydrogenases, glutamate dehydrogenases (GDHs), catalases and superoxide dismutases (SODs). This selection is based on the extensive experience of our research group working with these particular enzymes, from the discovery up to the development of commercial products available for the research market.
Collapse
Affiliation(s)
| | | | - Jenny M. Blamey
- Fundación Biociencia, Santiago, Chile
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
7
|
Development of a colorimetric α-ketoglutarate detection assay for prolyl hydroxylase domain (PHD) proteins. J Biol Chem 2021; 296:100397. [PMID: 33571527 PMCID: PMC7961094 DOI: 10.1016/j.jbc.2021.100397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 11/20/2022] Open
Abstract
Since the discovery of the prolyl hydroxylases domain (PHD) proteins and their canonical hypoxia-inducible factor (HIF) substrate two decades ago, a number of in vitro hydroxylation (IVH) assays for PHD activity have been developed to measure the PHD-HIF interaction. However, most of these assays either require complex proteomics mass spectrometry methods that rely on the specific PHD-HIF interaction or require the handling of radioactive material, as seen in the most commonly used assay measuring [14C]O2 release from labeled [14C]α-ketoglutarate. Here, we report an alternative rapid, cost-effective assay in which the consumption of α-ketoglutarate is monitored by its derivatization with 2,4-dinitrophenylhydrazine (2,4-DNPH) followed by treatment with concentrated base. We extensively optimized this 2,4-DNPH α-ketoglutarate assay to maximize the signal-to-noise ratio and demonstrated that it is robust enough to obtain kinetic parameters of the well-characterized PHD2 isoform comparable with those in published literature. We further showed that it is also sensitive enough to detect and measure the IC50 values of pan-PHD inhibitors and several PHD2 inhibitors in clinical trials for chronic kidney disease (CKD)-induced anemia. Given the efficiency of this assay coupled with its multiwell format, the 2,4-DNPH α-KG assay may be adaptable to explore non-HIF substrates of PHDs and potentially to high-throughput assays.
Collapse
|
8
|
A Novel Carboxylesterase Derived from a Compost Metagenome Exhibiting High Stability and Activity towards High Salinity. Genes (Basel) 2021; 12:genes12010122. [PMID: 33478024 PMCID: PMC7835964 DOI: 10.3390/genes12010122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Halotolerant lipolytic enzymes have gained growing interest, due to potential applications under harsh conditions, such as hypersalinity and presence of organic solvents. In this study, a lipolytic gene, est56, encoding 287 amino acids was identified by functional screening of a compost metagenome. Subsequently, the gene was heterologously expressed, and the recombinant protein (Est56) was purified and characterized. Est56 is a mesophilic (Topt 50 °C) and moderate alkaliphilic (pHopt 8) enzyme, showing high thermostability at 30 and 40 °C. Strikingly, Est56 is halotolerant as it exhibited high activity and stability in the presence of up to 4 M NaCl or KCl. Est56 also displayed enhanced stability against high temperatures (50 and 60 °C) and urea (2, 4, and 6 M) in the presence of NaCl. In addition, the recently reported halotolerant lipolytic enzymes were summarized. Phylogenetic analysis grouped these enzymes into 13 lipolytic protein families. The majority (45%) including Est56 belonged to family IV. To explore the haloadaptation of halotolerant enzymes, the amino acid composition between halotolerant and halophilic enzymes was statistically compared. The most distinctive feature of halophilic from non-halophilic enzymes are the higher content of acidic residues (Asp and Glu), and a lower content of lysine, aliphatic hydrophobic (Leu, Met and Ile) and polar (Asn) residues. The amino acid composition and 3-D structure analysis suggested that the high content of acidic residues (Asp and Glu, 12.2%) and low content of lysine residues (0.7%), as well as the excess of surface-exposed acidic residues might be responsible for the haloadaptation of Est56.
Collapse
|
9
|
Abstract
Type I Baeyer–Villiger monooxygenases (BVMOs) are flavin-dependent monooxygenases that catalyze the oxidation of ketones to esters or lactones, a reaction otherwise performed in chemical processes by employing hazardous and toxic peracids. Even though various BVMOs are extensively studied for their promising role in industrial biotechnology, there is still a demand for enzymes that are able to retain activity at high saline concentrations. To this aim, and based on comparative in silico analyses, we cloned HtBVMO from the extremely halophilic archaeon Haloterrigena turkmenica DSM 5511. When expressed in standard mesophilic cell factories, proteins adapted to hypersaline environments often behave similarly to intrinsically disordered polypeptides. Nevertheless, we managed to express HtBVMO in Escherichia coli and could purify it as active enzyme. The enzyme was characterized in terms of its salt-dependent activity and resistance to some water–organic-solvent mixtures. Although HtBVMO does not seem suitable for industrial applications, it provides a peculiar example of an alkalophilic and halophilic BVMO characterized by an extremely negative charge. Insights into the behavior and structural properties of such salt-requiring may contribute to more efficient strategies for engineering the tuned stability and solubility of existing BVMOs.
Collapse
|
10
|
Tokunaga H, Maeda J, Arakawa T, Tokunaga M. Reversible Activation of Halophilic β-lactamase from Methanol-Induced Inactive Form: Contrast to Irreversible Inactivation of Non-Halophilic Counterpart. Protein J 2017; 36:228-237. [DOI: 10.1007/s10930-017-9715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Song J, Liang B, Han D, Tang X, Lang Q, Feng R, Han L, Liu A. Bacterial cell-surface displaying of thermo-tolerant glutamate dehydrogenase and its application in L-glutamate assay. Enzyme Microb Technol 2014; 70:72-8. [PMID: 25659635 DOI: 10.1016/j.enzmictec.2014.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 12/17/2022]
Abstract
In this paper, glutamate dehydrogenase (Gldh) is reported to efficiently display on Escherichia coli cell surface by using N-terminal region of ice the nucleation protein as an anchoring motif. The presence of Gldh was confirmed by SDS-PAGE and enzyme activity assay. Gldh was detected mainly in the outer membrane fraction, suggesting that the Gldh was displayed on the bacterial cell surface. The optimal temperature and pH for the bacteria cell-surface displayed Gldh (bacteria-Gldh) were 70°C and 9.0, respectively. Additionally, the fusion protein retained almost 100% of its initial enzymatic activity after 1 month incubation at 4°C. Transition metal ions could inhibit the enzyme activity to different extents, while common anions had little adverse effect on enzyme activity. Importantly, the displayed Gldh is most specific to l-glutamate reported so far. The bacterial Gldh was enabled to catalyze oxidization of l-glutamate with NADP(+) as cofactor, and the resultant NADPH can be detected spectrometrically at 340nm. The bacterial-Gldh based l-glutamate assay was established, where the absorbance at 340nm increased linearly with the increasing l-glutamate concentration within the range of 10-400μM. Further, the proposed approach was successfully applied to measure l-glutamate in real samples.
Collapse
Affiliation(s)
- Jianxia Song
- Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China; Laboratory for Biosensing, and Key Laboratory of Biofuels, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
| | - Bo Liang
- Laboratory for Biosensing, and Key Laboratory of Biofuels, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
| | - Dongfei Han
- Laboratory for Biosensing, and Key Laboratory of Biofuels, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
| | - Xiangjiang Tang
- Laboratory for Biosensing, and Key Laboratory of Biofuels, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
| | - Qiaolin Lang
- Laboratory for Biosensing, and Key Laboratory of Biofuels, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
| | - Ruirui Feng
- Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| | - Lihui Han
- Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China.
| | - Aihua Liu
- Laboratory for Biosensing, and Key Laboratory of Biofuels, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China.
| |
Collapse
|
12
|
Ma B, Gong J. A meta-analysis of the publicly available bacterial and archaeal sequence diversity in saline soils. World J Microbiol Biotechnol 2013; 29:2325-34. [DOI: 10.1007/s11274-013-1399-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
|
13
|
Wakamatsu T, Higashi C, Ohmori T, Doi K, Ohshima T. Biochemical characterization of two glutamate dehydrogenases with different cofactor specificities from a hyperthermophilic archaeon Pyrobaculum calidifontis. Extremophiles 2013; 17:379-89. [PMID: 23508687 DOI: 10.1007/s00792-013-0527-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 01/31/2013] [Indexed: 11/30/2022]
Abstract
Two putative glutamate dehydrogenase (GDH) genes (pcal_1031 and pcal_1606) were found in a sulfur-dependent hyperthermophilic archaeon, Pyrobaculum calidifontis. The two genes were then expressed in Escherichia coli, and both of the recombinant gene products showed GDH activity. The two enzymes were then purified to homogeneity and characterized in detail. Although both purified GDHs had a hexameric structure and neither exhibited allosteric regulation, they showed different coenzyme specificities: one was specific for NAD(+), the other for NADP(+) and different heat activation mechanisms. In addition, there was little difference in the kinetic constants, optimal temperature, thermal stability, optimal pH and pH stability between the two enzymes. The overall sequence identity between the two proteins was very high (81%), but was not high in the region recognizing the 2' position of the adenine ribose moiety, which is responsible for coenzyme specificity. This is the first report on the identification of two GDHs with different coenzyme specificities from a single hyperthermophilic archaeon and the definition of their basic in vitro properties.
Collapse
Affiliation(s)
- Taisuke Wakamatsu
- Microbial Genetics Division, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | |
Collapse
|
14
|
Effect of organic solvents on the activity and stability of halophilic alcohol dehydrogenase (ADH2) from Haloferax volcanii. Extremophiles 2012. [PMID: 23179592 DOI: 10.1007/s00792-012-0498-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of various organic solvents on the catalytic activity, stability and substrate specificity of alchohol dehydrogenase from Haloferax volcanii (HvADH2) was evaluated. The HvADH2 showed remarkable stability and catalysed the reaction in aqueous-organic medium containing dimethyl sulfoxide (DMSO) and methanol (MeOH). Tetrahydrofuran and acetonitrile were also investigated and adversely affected the stability of the enzyme. High concentration of salt, essential to maintain the enzymatic activity and structural integrity of the halophilic enzyme under standard conditions may be partially replaced by DMSO and MeOH. The presence of organic solvents did not induce gross changes in substrate specificity. DMSO offered a protective effect for the stability of the enzyme at nonoptimal pHs such as 6 and 10. Salt and solvent effects on the HvADH2 conformation and folding were examined through fluorescence spectroscopy. The fluorescence findings were consistent with the activity and stability results and corroborated the denaturing properties of some solvents. The intrinsic tolerance of this enzyme to organic solvent makes it highly attractive to industry.
Collapse
|
15
|
Munawar N, Engel PC. Prospects for robust biocatalysis: engineering of novel specificity in a halophilic amino acid dehydrogenase. Extremophiles 2012. [DOI: https://doi.org/10.1007/s00792-012-0491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Munawar N, Engel PC. Prospects for robust biocatalysis: engineering of novel specificity in a halophilic amino acid dehydrogenase. Extremophiles 2012; 17:43-51. [PMID: 23104166 DOI: 10.1007/s00792-012-0491-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
Heat- and solvent-tolerant enzymes from halophiles, potentially important industrially, offer a robust framework for protein engineering, but few solved halophilic structures exist to guide this. Homology modelling has guided mutations in glutamate dehydrogenase (GDH) from Halobacterium salinarum to emulate conversion of a mesophilic GDH to a methionine dehydrogenase. Replacement of K89, A163 and S367 by leucine, glycine and alanine converted halophilic GDH into a dehydrogenase accepting L-methionine, L-norleucine and L-norvaline as substrates. Over-expression in the halophilic expression host Haloferax volcanii and three-step purification gave ~98 % pure protein exhibiting maximum activity at pH 10. This enzyme also showed enhanced thermostability and organic solvent tolerance even at 70 °C, offering a biocatalyst resistant to harsh industrial environments. To our knowledge, this is the first reported amino acid specificity change engineered in a halophilic enzyme, encouraging use of mesophilic models to guide engineering of novel halophilic biocatalysts for industrial application. Calibrated gel filtration experiments show that both the mutant and the wild-type enzyme are stable hexamers.
Collapse
Affiliation(s)
- Nayla Munawar
- Conway Institute, UCD School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | | |
Collapse
|