1
|
Fiorentino G, Contursi P, Gallo G, Bartolucci S, Limauro D. A peroxiredoxin of Thermus thermophilus HB27: Biochemical characterization of a new player in the antioxidant defence. Int J Biol Macromol 2020; 153:608-615. [PMID: 32165200 DOI: 10.1016/j.ijbiomac.2020.03.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/11/2023]
Abstract
To fight oxidative damage due to reactive oxygen species (ROS), cells are equipped of different enzymes, among which Peroxiredoxins (Prxs) (EC 1.11.1.15) play a key role. Prxs are thiol-based enzymes containing one (1-Cys Prx) or two (2-Cys Prx) catalytic cysteine residues. In 2-Cys Prxs the cysteine residues form a disulfide bridge following reduction of peroxide which is in turn reduced by Thioredoxin reductase (Tr) /Thioredoxin (Trx) disulfide reducing system to regenerate the enzyme. In this paper we investigated on Prxs of Thermus thermophilus whose genome contains an ORF TT_C0933 encoding a putative Prx, belonging to the subfamily of Bacterioferritin comigratory protein (Bcp): the synthetic gene was produced and expressed in E. coli and the recombinant protein, TtBcp, was biochemically characterized. TtBcp was active on both organic and inorganic peroxides and showed stability at high temperatures. To get insight into disulfide reducing system involved in the recycling of the enzyme we showed that TtBcp catalically eliminates hydrogen peroxide using an unusual partner, the Protein Disulfide Oxidoreductase (TtPDO) that could replace regeneration of the enzyme. Altogether these results highlight not only a new anti-oxidative pathway but also a promising molecule for possible future biotechnological applications.
Collapse
Affiliation(s)
- Gabriella Fiorentino
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso universitario di Monte S. Angelo, Via Cinthia, Naples, Italy
| | - Patrizia Contursi
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso universitario di Monte S. Angelo, Via Cinthia, Naples, Italy
| | - Giovanni Gallo
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso universitario di Monte S. Angelo, Via Cinthia, Naples, Italy
| | - Simonetta Bartolucci
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso universitario di Monte S. Angelo, Via Cinthia, Naples, Italy
| | - Danila Limauro
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso universitario di Monte S. Angelo, Via Cinthia, Naples, Italy.
| |
Collapse
|
2
|
Aulitto M, Fusco S, Limauro D, Fiorentino G, Bartolucci S, Contursi P. Galactomannan degradation by thermophilic enzymes: a hot topic for biotechnological applications. World J Microbiol Biotechnol 2019; 35:32. [DOI: 10.1007/s11274-019-2591-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/10/2019] [Indexed: 01/06/2023]
|
3
|
Antonucci I, Gallo G, Limauro D, Contursi P, Ribeiro AL, Blesa A, Berenguer J, Bartolucci S, Fiorentino G. An ArsR/SmtB family member regulates arsenic resistance genes unusually arranged in Thermus thermophilus HB27. Microb Biotechnol 2017; 10:1690-1701. [PMID: 28696001 PMCID: PMC5658604 DOI: 10.1111/1751-7915.12761] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 01/01/2023] Open
Abstract
Arsenic resistance is commonly clustered in ars operons in bacteria; main ars operon components encode an arsenate reductase, a membrane extrusion protein, and an As‐sensitive transcription factor. In the As‐resistant thermophile Thermus thermophilus HB27, genes encoding homologues of these proteins are interspersed in the chromosome. In this article, we show that two adjacent genes, TtsmtB, encoding an ArsR/SmtB transcriptional repressor and, TTC0354, encoding a Zn2+/Cd2+‐dependent membrane ATPase are involved in As resistance; differently from characterized ars operons, the two genes are transcribed from dedicated promoters upstream of their respective genes, whose expression is differentially regulated at transcriptional level. Mutants defective in TtsmtB or TTC0354 are more sensitive to As than the wild type, proving their role in arsenic resistance. Recombinant dimeric TtSmtB binds in vitro to both promoters, but its binding capability decreases upon interaction with arsenate and, less efficiently, with arsenite. In vivo and in vitro experiments also demonstrate that the arsenate reductase (TtArsC) is subjected to regulation by TtSmtB. We propose a model for the regulation of As resistance in T. thermophilus in which TtSmtB is the arsenate sensor responsible for the induction of TtArsC which generates arsenite exported by TTC0354 efflux protein to detoxify cells.
Collapse
Affiliation(s)
- Immacolata Antonucci
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Giovanni Gallo
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Danila Limauro
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Patrizia Contursi
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Ana Luisa Ribeiro
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Alba Blesa
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José Berenguer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Simonetta Bartolucci
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Gabriella Fiorentino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| |
Collapse
|
4
|
Discovering Antioxidant Molecules in the Archaea Domain: Peroxiredoxin Bcp1 from Sulfolobus solfataricus Protects H9c2 Cardiomyoblasts from Oxidative Stress. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:7424870. [PMID: 27752237 PMCID: PMC5056240 DOI: 10.1155/2016/7424870] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/29/2016] [Accepted: 07/31/2016] [Indexed: 12/15/2022]
Abstract
Peroxiredoxins (Prxs) are ubiquitous thiol peroxidases that are involved in the reduction of peroxides. It has been reported that prokaryotic Prxs generally show greater structural robustness than their eukaryotic counterparts, making them less prone to inactivation by overoxidation. This difference has inspired the search for new antioxidants from prokaryotic sources that can be used as possible therapeutic biodrugs. Bacterioferritin comigratory proteins (Bcps) of the hyperthermophilic archaeon Sulfolobus solfataricus that belong to the Prx family have recently been characterized. One of these proteins, Bcp1, was chosen to determine its antioxidant effects in H9c2 rat cardiomyoblast cells. Bcp1 activity was measured in vitro under physiological temperature and pH conditions that are typical of mammalian cells; the yeast thioredoxin reductase (yTrxR)/thioredoxin (yTrx) reducing system was used to evaluate enzyme activity. A TAT-Bcp1 fusion protein was constructed to allow its internalization and verify the effect of Bcp1 on H9c2 rat cardiomyoblasts subjected to oxidative stress. The results reveal that TAT-Bcp1 is not cytotoxic and inhibits H2O2-induced apoptosis in H9c2 cells by reducing the H2O2 content inside these cells.
Collapse
|