1
|
Makarova KS, Zhang C, Wolf YI, Karamycheva S, Whitaker RJ, Koonin EV. Computational analysis of genes with lethal knockout phenotype and prediction of essential genes in archaea. mBio 2024; 15:e0309223. [PMID: 38189270 PMCID: PMC10865827 DOI: 10.1128/mbio.03092-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
The identification of microbial genes essential for survival as those with lethal knockout phenotype (LKP) is a common strategy for functional interrogation of genomes. However, interpretation of the LKP is complicated because a substantial fraction of the genes with this phenotype remains poorly functionally characterized. Furthermore, many genes can exhibit LKP not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes (conditionally essential genes). We analyzed the sets of LKP genes for two archaea, Methanococcus maripaludis and Sulfolobus islandicus, using a variety of computational approaches aiming to differentiate between essential and conditionally essential genes and to predict at least a general function for as many of the proteins encoded by these genes as possible. This analysis allowed us to predict the functions of several LKP genes including previously uncharacterized subunit of the GINS protein complex with an essential function in genome replication and of the KEOPS complex that is responsible for an essential tRNA modification as well as GRP protease implicated in protein quality control. Additionally, several novel antitoxins (conditionally essential genes) were predicted, and this prediction was experimentally validated by showing that the deletion of these genes together with the adjacent genes apparently encoding the cognate toxins caused no growth defect. We applied principal component analysis based on sequence and comparative genomic features showing that this approach can separate essential genes from conditionally essential ones and used it to predict essential genes in other archaeal genomes.IMPORTANCEOnly a relatively small fraction of the genes in any bacterium or archaeon is essential for survival as demonstrated by the lethal effect of their disruption. The identification of essential genes and their functions is crucial for understanding fundamental cell biology. However, many of the genes with a lethal knockout phenotype remain poorly functionally characterized, and furthermore, many genes can exhibit this phenotype not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes. We applied state-of-the-art computational methods to predict the functions of a number of uncharacterized genes with the lethal knockout phenotype in two archaeal species and developed a computational approach to predict genes involved in essential functions. These findings advance the current understanding of key functionalities of archaeal cells.
Collapse
Affiliation(s)
- Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Changyi Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Rachel J. Whitaker
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Genetic and Biochemical Characterizations of aLhr1 Helicase in the Thermophilic Crenarchaeon Sulfolobus acidocaldarius. Catalysts 2021. [DOI: 10.3390/catal12010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Homologous recombination (HR) refers to the process of information exchange between homologous DNA duplexes and is composed of four main steps: end resection, strand invasion and formation of a Holliday junction (HJ), branch migration, and resolution of the HJ. Within each step of HR in Archaea, the helicase-promoting branch migration is not fully understood. Previous biochemical studies identified three candidates for archaeal helicase promoting branch migration in vitro: Hjm/Hel308, PINA, and archaeal long helicase related (aLhr) 2. However, there is no direct evidence of their involvement in HR in vivo. Here, we identified a novel helicase encoded by Saci_0814, isolated from the thermophilic crenarchaeon Sulfolobus acidocaldarius; the helicase dissociated a synthetic HJ. Notably, HR frequency in the Saci_0814-deleted strain was lower than that of the parent strain (5-fold decrease), indicating that Saci_0814 may be involved in HR in vivo. Saci_0814 is classified as an aLhr1 under superfamily 2 helicases; its homologs are conserved among Archaea. Purified protein produced in Escherichia coli showed branch migration activity in vitro. Based on both genetic and biochemical evidence, we suggest that aLhr1 is involved in HR and may function as a branch migration helicase in S. acidocaldarius.
Collapse
|
3
|
Pérez-Arnaiz P, Dattani A, Smith V, Allers T. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Open Biol 2020; 10:200293. [PMID: 33259746 PMCID: PMC7776575 DOI: 10.1098/rsob.200293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical techniques were then needed to study the third domain of life. Haloferax volcanii, a halophilic species belonging to the phylum Euryarchaeota, has provided many useful tools to study Archaea, including easy culturing methods, genetic manipulation and phenotypic screening. This review will focus on DNA replication and DNA repair pathways in H. volcanii, how this work has advanced our knowledge of archaeal cellular biology, and how it may deepen our understanding of bacterial and eukaryotic processes.
Collapse
Affiliation(s)
| | | | | | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
4
|
Hidese R, Kawato K, Nakura Y, Fujiwara A, Yasukawa K, Yanagihara I, Fujiwara S. Thermostable DNA helicase improves the sensitivity of digital PCR. Biochem Biophys Res Commun 2017; 495:2189-2194. [PMID: 29233693 DOI: 10.1016/j.bbrc.2017.12.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
DNA/RNA helicases, which catalyze the unwinding of duplex nucleic acids using the energy of ATP hydrolysis, contribute to various biological functions involving DNA or RNA. Euryarchaeota-specific helicase Tk-EshA (superfamily 2) from the hyperthermophilic archaeon Thermococcus kodakarensis has been used to decrease generation of mis-amplified products (noise DNAs) during PCR. In this study, we focused on another type (superfamily 1B) of helicase, Tk-Upf1 (TK0178) from T. kodakarensis, and compared its effectiveness in PCR and digital PCR with that of Tk-EshA. For this purpose, we obtained Tk-Upf1 as a recombinant protein and assessed its enzymatic characteristics. Among various double-stranded DNA (dsDNA) substrates (forked, 5' overhung, 3' overhung, and blunt-ended duplex), Tk-Upf1 had the highest unwinding activity toward 5' overhung DNAs. Noise DNAs were also eliminated in the presence of Tk-Upf1 at concentrations 10-fold lower than those required to yield a comparable reduction with Tk-EshA. When a 5' or 3' overhung mis-annealed primer was included as a competitive primer along with specific primers, noise DNAs derived from the mis-annealed primer were eliminated in the presence of Tk-Upf1. In digital PCR, addition of Tk-EshA or Tk-Upf1 increased fluorescent intensities and improved separation between common and risk allele clusters, indicating that both helicases functioned as signal enhancers. In comparison with Tk-EshA, a smaller amount of Tk-Upf1 was required to improve the performance of digital PCR.
Collapse
Affiliation(s)
- Ryota Hidese
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Katsuhiro Kawato
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yukiko Nakura
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| | - Ayako Fujiwara
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.
| |
Collapse
|
5
|
Possible function of the second RecJ-like protein in stalled replication fork repair by interacting with Hef. Sci Rep 2017; 7:16949. [PMID: 29209094 PMCID: PMC5717133 DOI: 10.1038/s41598-017-17306-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/20/2017] [Indexed: 01/03/2023] Open
Abstract
RecJ was originally identified in Escherichia coli and plays an important role in the DNA repair and recombination pathways. Thermococcus kodakarensis, a hyperthermophilic archaeon, has two RecJ-like nucleases. These proteins are designated as GAN (GINS-associated nuclease) and HAN (Hef-associated nuclease), based on the protein they interact with. GAN is probably a counterpart of Cdc45 in the eukaryotic CMG replicative helicase complex. HAN is considered mainly to function with Hef for restoration of the stalled replication fork. In this study, we characterized HAN to clarify its functions in Thermococcus cells. HAN showed single-strand specific 3′ to 5′ exonuclease activity, which was stimulated in the presence of Hef. A gene disruption analysis revealed that HAN was non-essential for viability, but the ΔganΔhan double mutant did not grow under optimal conditions at 85 °C. This deficiency was not fully recovered by introducing the mutant han gene, encoding the nuclease-deficient HAN protein, back into the genome. These results suggest that the unstable replicative helicase complex without GAN performs ineffective fork progression, and thus the stalled fork repair system including HAN becomes more important. The nuclease activity of HAN is required for the function of this protein in T. kodakarensis.
Collapse
|
6
|
Nagata M, Ishino S, Yamagami T, Ogino H, Simons JR, Kanai T, Atomi H, Ishino Y. The Cdc45/RecJ-like protein forms a complex with GINS and MCM, and is important for DNA replication in Thermococcus kodakarensis. Nucleic Acids Res 2017; 45:10693-10705. [PMID: 28977567 PMCID: PMC5737688 DOI: 10.1093/nar/gkx740] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/12/2017] [Indexed: 01/18/2023] Open
Abstract
The archaeal minichromosome maintenance (MCM) has DNA helicase activity, which is stimulated by GINS in several archaea. In the eukaryotic replicative helicase complex, Cdc45 forms a complex with MCM and GINS, named as CMG (Cdc45-MCM-GINS). Cdc45 shares sequence similarity with bacterial RecJ. A Cdc45/RecJ-like protein from Thermococcus kodakarensis shows a bacterial RecJ-like exonuclease activity, which is stimulated by GINS in vitro. Therefore, this archaeal Cdc45/RecJ is designated as GAN, from GINS-associated nuclease. In this study, we identified the CMG-like complex in T. kodakarensis cells. The GAN·GINS complex stimulated the MCM helicase, but MCM did not affect the nuclease activity of GAN in vitro. The gene disruption analysis showed that GAN was non-essential for its viability but the Δgan mutant did not grow at 93°C. Furthermore, the Δgan mutant showed a clear retardation in growth as compared with the parent cells under optimal conditions at 85°C. These deficiencies were recovered by introducing the gan gene encoding the nuclease deficient GAN protein back to the genome. These results suggest that the replicative helicase complex without GAN may become unstable and ineffective in replication fork progression. The nuclease activity of GAN is not related to the growth defects of the Δgan mutant cells.
Collapse
Affiliation(s)
- Mariko Nagata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Hiromi Ogino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Jan-Robert Simons
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 615-8510, Japan
| | - Tamotsu Kanai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 615-8510, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 615-8510, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| |
Collapse
|
7
|
Ogino H, Ishino S, Kohda D, Ishino Y. The RecJ2 protein in the thermophilic archaeon Thermoplasma acidophilum is a 3'-5' exonuclease that associates with a DNA replication complex. J Biol Chem 2017; 292:7921-7931. [PMID: 28302716 DOI: 10.1074/jbc.m116.767921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/15/2017] [Indexed: 11/06/2022] Open
Abstract
RecJ/cell division cycle 45 (Cdc45) proteins are widely conserved in the three domains of life, i.e. in bacteria, Eukarya, and Archaea. Bacterial RecJ is a 5'-3' exonuclease and functions in DNA repair pathways by using its 5'-3' exonuclease activity. Eukaryotic Cdc45 has no identified enzymatic activity but participates in the CMG complex, so named because it is composed of Cdc45, minichromosome maintenance protein complex (MCM) proteins 2-7, and GINS complex proteins (Sld5, Psf11-3). Eukaryotic Cdc45 and bacterial/archaeal RecJ share similar amino acid sequences and are considered functional counterparts. In Archaea, a RecJ homolog in Thermococcus kodakarensis was shown to associate with GINS and accelerate its nuclease activity and was, therefore, designated GAN (GINS-associated nuclease); however, to date, no archaeal RecJ·MCM·GINS complex has been isolated. The thermophilic archaeon Thermoplasma acidophilum has two RecJ-like proteins, designated TaRecJ1 and TaRecJ2. TaRecJ1 exhibited DNA-specific 5'-3' exonuclease activity, whereas TaRecJ2 had 3'-5' exonuclease activity and preferred RNA over DNA. TaRecJ2, but not TaRecJ1, formed a stable complex with TaGINS in a 2:1 molar ratio. Furthermore, the TaRecJ2·TaGINS complex stimulated activity of TaMCM (T. acidophilum MCM) helicase in vitro, and the TaRecJ2·TaMCM·TaGINS complex was also observed in vivo However, TaRecJ2 did not interact with TaMCM directly and was not required for the helicase activation in vitro These findings suggest that the function of archaeal RecJ in DNA replication evolved divergently from Cdc45 despite conservation of the CMG-like complex formation between Archaea and Eukarya.
Collapse
Affiliation(s)
- Hiromi Ogino
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashiku, Fukuoka 812-8581, Japan and
| | - Sonoko Ishino
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashiku, Fukuoka 812-8581, Japan and
| | - Daisuke Kohda
- the Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Yoshizumi Ishino
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashiku, Fukuoka 812-8581, Japan and .,the Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashiku, Fukuoka 812-8582, Japan
| |
Collapse
|
8
|
Cannone G, Visentin S, Palud A, Henneke G, Spagnolo L. Structure of an octameric form of the minichromosome maintenance protein from the archaeon Pyrococcus abyssi. Sci Rep 2017; 7:42019. [PMID: 28176822 PMCID: PMC5296750 DOI: 10.1038/srep42019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Cell division is a complex process that requires precise duplication of genetic material. Duplication is concerted by replisomes. The Minichromosome Maintenance (MCM) replicative helicase is a crucial component of replisomes. Eukaryotic and archaeal MCM proteins are highly conserved. In fact, archaeal MCMs are powerful tools for elucidating essential features of MCM function. However, while eukaryotic MCM2-7 is a heterocomplex made of different polypeptide chains, the MCM complexes of many Archaea form homohexamers from a single gene product. Moreover, some archaeal MCMs are polymorphic, and both hexameric and heptameric architectures have been reported for the same polypeptide. Here, we present the structure of the archaeal MCM helicase from Pyrococcus abyssi in its single octameric ring assembly. To our knowledge, this is the first report of a full-length octameric MCM helicase.
Collapse
Affiliation(s)
- Giuseppe Cannone
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
- School of Biological Sciences and Max Born Crescent, Edinburgh EH9 3JR, UK
- Centre for Science at extreme conditions, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3JR, UK
| | - Silvia Visentin
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
- School of Biological Sciences and Max Born Crescent, Edinburgh EH9 3JR, UK
- ISIS neutron source, Science and Technologies Research Council, Rutherford Appleton Laboratories, Harwell, OX11 0QX United Kingdom
| | - Adeline Palud
- IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, ZI de la pointe du diable CS 10070 29280 Plouzané, France
- Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
- CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
| | - Ghislaine Henneke
- IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, ZI de la pointe du diable CS 10070 29280 Plouzané, France
- Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
- CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
| | - Laura Spagnolo
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
9
|
Xu Y, Gristwood T, Hodgson B, Trinidad JC, Albers SV, Bell SD. Archaeal orthologs of Cdc45 and GINS form a stable complex that stimulates the helicase activity of MCM. Proc Natl Acad Sci U S A 2016; 113:13390-13395. [PMID: 27821767 PMCID: PMC5127375 DOI: 10.1073/pnas.1613825113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulated recruitment of Cdc45 and GINS is key to activating the eukaryotic MCM(2-7) replicative helicase. We demonstrate that the homohexameric archaeal MCM helicase associates with orthologs of GINS and Cdc45 in vivo and in vitro. Association of these factors with MCM robustly stimulates the MCM helicase activity. In contrast to the situation in eukaryotes, archaeal Cdc45 and GINS form an extremely stable complex before binding MCM. Further, the archaeal GINS•Cdc45 complex contains two copies of Cdc45. Our analyses give insight into the function and evolution of the conserved core of the archaeal/eukaryotic replisome.
Collapse
Affiliation(s)
- Yuli Xu
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
- Biology Department, Indiana University, Bloomington, IN 47405
| | - Tamzin Gristwood
- Sir William Dunn School of Pathology, Oxford OX13RE, United Kingdom
| | - Ben Hodgson
- Sir William Dunn School of Pathology, Oxford OX13RE, United Kingdom
| | | | - Sonja-Verena Albers
- Max Planck Institute für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | - Stephen D Bell
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405;
- Biology Department, Indiana University, Bloomington, IN 47405
| |
Collapse
|
10
|
Fujiwara A, Kawato K, Kato S, Yasukawa K, Hidese R, Fujiwara S. Application of a Euryarchaeota-Specific Helicase from Thermococcus kodakarensis for Noise Reduction in PCR. Appl Environ Microbiol 2016; 82:3022-3031. [PMID: 26969705 PMCID: PMC4959085 DOI: 10.1128/aem.04116-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/04/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED DNA/RNA helicases, which are enzymes for eliminating hydrogen bonds between bases of DNA/DNA, DNA/RNA, and RNA/RNA using the energy of ATP hydrolysis, contribute to various biological activities. In the present study, the Euryarchaeota-specific helicase EshA (TK0566) from the hyperthermophilic archaeon Thermococcus kodakarensis (Tk-EshA) was obtained as a recombinant form, and its enzymatic properties were examined. Tk-EshA exhibited maximal ATPase activity in the presence of RNA at 80°C. Unwinding activity was evaluated with various double-stranded DNAs (forked, 5' overhung, 3' overhung, and blunt end) at 50°C. Tk-EshA unwound forked and 3' overhung DNAs. These activities were expected to unwind the structured template and to peel off misannealed primers when Tk-EshA was added to a PCR mixture. To examine the effect of Tk-EshA on PCR, various target DNAs were selected, and DNA synthesis was investigated. When 16S rRNA genes were used as a template, several misamplified products (noise DNAs) were detected in the absence of Tk-EshA. In contrast, noise DNAs were eliminated in the presence of Tk-EshA. Noise reduction by Tk-EshA was also confirmed when Taq DNA polymerase (a family A DNA polymerase, PolI type) and KOD DNA polymerase (a family B DNA polymerase, α type) were used for PCR. Misamplified bands were also eliminated during toxA gene amplification from Pseudomonas aeruginosa DNA, which possesses a high GC content (69%). Tk-EshA addition was more effective than increasing the annealing temperature to reduce misamplified DNAs during toxA amplification. Tk-EshA is a useful tool to reduce noise DNAs for accurate PCR. IMPORTANCE PCR is a technique that is useful for genetic diagnosis, genetic engineering, and detection of pathogenic microorganisms. However, troubles with nonspecific DNA amplification often occur from primer misannealing. In order to achieve a specific DNA amplification by eliminating noise DNAs derived from primer misannealing, a thermostable Euryarchaeota-specific helicase (Tk-EshA) was included in the PCR mixture. The addition of Tk-EshA has reduced noise DNAs in PCR.
Collapse
Affiliation(s)
- Ayako Fujiwara
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, Japan
| | - Katsuhiro Kawato
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, Japan
| | - Saori Kato
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryota Hidese
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, Japan
- Research Center for Intelligent Bio-Materials, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, Japan
| |
Collapse
|
11
|
The Sulfolobus solfataricus GINS Complex Stimulates DNA Binding and Processive DNA Unwinding by Minichromosome Maintenance Helicase. J Bacteriol 2015; 197:3409-20. [PMID: 26283767 DOI: 10.1128/jb.00496-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED GINS is a key component of the eukaryotic Cdc45-minichromosome maintenance (MCM)-GINS (CMG) complex, which unwinds duplex DNA at the moving replication fork. Archaeal GINS complexes have been shown to stimulate the helicase activity of their cognate MCM mainly by elevating its ATPase activity. Here, we report that GINS from the thermoacidophilic crenarchaeon Sulfolobus solfataricus (SsoGINS) is capable of DNA binding and binds preferentially to single-stranded DNA (ssDNA) over double-stranded DNA (dsDNA). Notably, SsoGINS binds more strongly to dsDNA with a 5' ssDNA tail than to dsDNA with a 3' tail and more strongly to an ssDNA fragment blocked at the 3' end than to one at the 5' end with a biotin-streptavidin (SA) complex, suggesting the ability of the protein complex to slide in a 5'-to-3' direction along ssDNA. DNA-bound SsoGINS enhances DNA binding by SsoMCM. Furthermore, SsoGINS increases the helicase activity of SsoMCM. However, the ATPase activity of SsoMCM is not affected by SsoGINS. Our results suggest that SsoGINS facilitates processive DNA unwinding by SsoMCM by enhancing the binding of the helicase to DNA. We propose that SsoGINS stabilizes the interaction of SsoMCM with the replication fork and moves along with the helicase as the fork progresses. IMPORTANCE GINS is a key component of the eukaryotic Cdc45-MCM-GINS complex, a molecular motor that drives the unwinding of DNA in front of the replication fork. Archaea also encode GINS, which interacts with MCM, the helicase. But how archaeal GINS serves its role remains to be understood. In this study, we show that GINS from the hyperthermophilic archaeon Sulfolobus solfataricus is able to bind to DNA and slide along ssDNA in a 5'-to-3' direction. Furthermore, Sulfolobus GINS enhances DNA binding by MCM, which slides along ssDNA in a 3'-to-5' direction. Taken together, these results suggest that Sulfolobus GINS may stabilize the interaction of MCM with the moving replication fork, facilitating processive DNA unwinding.
Collapse
|
12
|
Characterization of the MCM homohexamer from the thermoacidophilic euryarchaeon Picrophilus torridus. Sci Rep 2015; 5:9057. [PMID: 25762096 PMCID: PMC4356968 DOI: 10.1038/srep09057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 02/05/2015] [Indexed: 01/04/2023] Open
Abstract
The typical archaeal MCM exhibits helicase activity independently invitro. This study characterizes MCM from the euryarchaeon Picrophilus torridus. While PtMCM hydrolyzes ATP in DNA-independent manner, it displays very poor ability to unwind DNA independently, and then too only under acidic conditions. The protein exists stably in complex with PtGINS in whole cell lysates, interacting directly with PtGINS under neutral and acidic conditions. GINS strongly activates MCM helicase activity, but only at low pH. In consonance with this, PtGINS activates PtMCM-mediated ATP hydrolysis only at low pH, with the amount of ATP hydrolyzed during the helicase reaction increasing more than fifty-fold in the presence of GINS. While the stimulation of MCM-mediated helicase activity by GINS has been reported in MCMs from P.furiosus, T.kodakarensis, and very recently, T.acidophilum, to the best of our knowledge, this is the first report of an MCM helicase demonstrating DNA unwinding activity only at such acidic pH, across all archaea and eukaryotes. PtGINS may induce/stabilize a conducive conformation of PtMCM under acidic conditions, favouring PtMCM-mediated DNA unwinding coupled to ATP hydrolysis. Our findings underscore the existence of divergent modes of replication regulation among archaea and the importance of investigating replication events in more archaeal organisms.
Collapse
|
13
|
Ogino H, Ishino S, Oyama T, Kohda D, Ishino Y. Disordered interdomain region of Gins is important for functional tetramer formation to stimulate MCM helicase in Thermoplasma acidophilum. Biosci Biotechnol Biochem 2014; 79:432-8. [PMID: 25419910 DOI: 10.1080/09168451.2014.982503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The eukaryotic MCM is activated by forming the CMG complex with Cdc45 and GINS to work as a replicative helicase. The eukaryotic GINS consists of four different proteins to form tetrameric complex. In contrast, the TaGins51 protein from the thermophilic archaeon, Thermoplasma acidophilum forms a homotetramer (TaGINS), and interacts with the cognate MCM (TaMCM) to stimulate the DNA-binding, ATPase, and helicase activities of TaMCM. All Gins proteins from Archaea and Eukarya contain α-helical A- and β-stranded B-domains. Here, we found that TaGins51 forms the tetramer without the B-domain. However, the A-domain without the linker region between the A- and B-domains could not form a stable tetramer, and furthermore, the A-domain by itself could not stimulate the TaMCM activity. These results suggest that the formation of the Gins51 tetramer is necessary for MCM activation, and the disordered linker region between the two domains is critical for the functional complex formation.
Collapse
Affiliation(s)
- Hiromi Ogino
- a Department of Bioscience & Biotechnology , Graduate School of Bioresource & Bioenvironmental Sciences, Kyushu University , Fukuoka , Japan
| | | | | | | | | |
Collapse
|
14
|
Antranikian G, Bonch-Osmolovskaya E, Atomi H, Oren A, Adams MW, Santos H. International conference on extremophiles 2014. Extremophiles 2014; 18:789-90. [PMID: 25159180 DOI: 10.1007/s00792-014-0690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Garabed Antranikian
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, 21073, Hamburg, Germany,
| | | | | | | | | | | |
Collapse
|