1
|
Ma L, Yabo SD, Lu L, Jiang J, Meng F, Qi H. Seasonal variation characteristics of inhalable bacteria in bioaerosols and antibiotic resistance genes in Harbin. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130597. [PMID: 36584645 DOI: 10.1016/j.jhazmat.2022.130597] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/27/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Bioaerosols have received extensive attention due to their impact on climate, ecological environment, and human health. This study aimed to reveal the driving factors that structure bacterial community composition and the transmission route of antibiotic resistance genes (ARGs) in PM2.5. The results showed that the bacterial concentration in spring (8.76 × 105 copies/m3) was significantly higher than that in summer (1.03 × 105 copies/m3) and winter (4.74 × 104 copies/m3). Low temperatures and air pollution in winter negatively affected bacterial concentrations. Keystone taxa were identified by network analysis. Although about 50 % of the keystone taxa had low relative abundances, the strong impact of complex interactions between keystone taxa and other taxa on bacterial community structure deserved attention. The bacterial community assembly was dominated by stochastic processes (79.3 %). Interactions between bacteria and environmental filtering together affected bacterial community composition. Vertical gene transfer played an important role in the transmission of airborne ARGs. Given the potential integration and expression of ARGs in recipients, the human exposure risk due to high concentrations of ARGs and mobile genetic elements cannot be ignored. This study highlights human exposure to inhalable bacterial pathogens and ARGs in urban areas.
Collapse
Affiliation(s)
- Lixin Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Stephen Dauda Yabo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinpan Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fan Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Wei M, Liu H, Chen J, Xu C, Li J, Xu P, Sun Z. Effects of aerosol pollution on PM 2.5-associated bacteria in typical inland and coastal cities of northern China during the winter heating season. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114188. [PMID: 32126435 DOI: 10.1016/j.envpol.2020.114188] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 05/14/2023]
Abstract
Frequent heavy aerosol pollution occurs during the winter heating season in northern China. Here, we characterized the airborne bacterial community structure and concentration, during typical pollution episodes that occurred during the winter heating season of 2017-2018 in Jinan and Weihai. During this heating season, five and four heavy pollution episodes were observed in Jinan and Weihai, respectively. Compared with December and January, pollution episodes in March were significantly affected by sand dust events. Higher Bacillales were identified in the March samples from Jinan, indicating that sand dust influences bacterial communities. During similar pollution episodes, air pollution in the coastal city of Weihai was lower than the inland city of Jinan. The predominant bacteria included Staphylococcus, Cyanobacteria, Lactobacillus, Deinococcus, Enbydrobacter, Ralstonia, Bacillus, Comamonas, and Sphingomonas. These predominant bacteria are mainly from Proteobacteria, Firmicutes, Cyanobacteria, Actinobacteria, and Bacteroidetes phyla. Bacterial concentration showed significant variation with increased airborne pollutants. The highest concentration appeared during moderate pollution (up to 106 cells/m3), whereas bacterial concentration decreased during heavy and severe pollution (105 cells/m3), which may be related to toxic effects of high pollutant concentrations during heavy or severe pollution. Community structure variation indicated that Cyanobacterial genera were dominant in clean or slight pollution. With increased PM2.5, Staphylococcus increased and became the most abundant bacteria in moderate pollution (up to 40%). During heavy or severe pollution, bacteria that are adaptable to harsh or extreme environments predominate, such as Deinococcus and Bacillus. In the assessment of health risks from air pollution, the bioaerosols risks must consider. Additionally, although most microbial genera are similar between the two cities, there are important differences associated with pollution level. During air pollution regulation in different regions with varied geographical and climatic conditions, bioaerosol pollution difference is an unignored factor.
Collapse
Affiliation(s)
- Min Wei
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China.
| | - Houfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China; Center for Environmental Technology and Policy Research, Shandong Normal University, Jinan, 250014, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Caihong Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Jie Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Pengju Xu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Ziwen Sun
- Center for Environmental Technology and Policy Research, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
3
|
Idris H, Goodfellow M, Sanderson R, Asenjo JA, Bull AT. Actinobacterial Rare Biospheres and Dark Matter Revealed in Habitats of the Chilean Atacama Desert. Sci Rep 2017; 7:8373. [PMID: 28827739 PMCID: PMC5566421 DOI: 10.1038/s41598-017-08937-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/04/2017] [Indexed: 11/23/2022] Open
Abstract
The Atacama Desert is the most extreme non-polar biome on Earth, the core region of which is considered to represent the dry limit for life and to be an analogue for Martian soils. This study focused on actinobacteria because they are keystone species in terrestrial ecosystems and are acknowledged as an unrivalled source of bioactive compounds. Metagenomic analyses of hyper-arid and extreme hyper-arid soils in this desert revealed a remarkable degree of actinobacterial 'dark matter', evidenced by a detected increase of 34% in families against those that are validly published. Rank-abundance analyses indicated that these soils were high-diversity habitats and that the great majority of designated 'rare' genera (up to 60% of all phylotypes) were always rare. These studies have enabled a core actinobacterial microbiome common to both habitats to be defined. The great majority of detected taxa have not been recovered by culture dependent methods, neither, with very few exceptions, has their functional ecology been explored. A microbial seed bank of this magnitude has significance not just for Atacama soil ecosystem resilience but represents an enormous untapped resource for biotechnology discovery programmes in an era where resistance to existing antibiotics is rapidly becoming a major threat to global health.
Collapse
Affiliation(s)
- Hamidah Idris
- School of Biology, Ridley Building, Newcastle University, Newcastle upon Tyne, NE1 7RU United Kingdom
| | - Michael Goodfellow
- School of Biology, Ridley Building, Newcastle University, Newcastle upon Tyne, NE1 7RU United Kingdom
| | - Roy Sanderson
- School of Biology, Ridley Building, Newcastle University, Newcastle upon Tyne, NE1 7RU United Kingdom
| | - Juan A. Asenjo
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - Alan T. Bull
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ Kent, United Kingdom
| |
Collapse
|
4
|
Abdul Majid S, Graw MF, Chatziefthimiou AD, Nguyen H, Richer R, Louge M, Sultan AA, Schloss P, Hay AG. Microbial Characterization of Qatari Barchan Sand Dunes. PLoS One 2016; 11:e0161836. [PMID: 27655399 PMCID: PMC5031452 DOI: 10.1371/journal.pone.0161836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/13/2016] [Indexed: 01/17/2023] Open
Abstract
This study represents the first characterization of sand microbiota in migrating barchan sand dunes. Bacterial communities were studied through direct counts and cultivation, as well as 16S rRNA gene and metagenomic sequence analysis to gain an understanding of microbial abundance, diversity, and potential metabolic capabilities. Direct on-grain cell counts gave an average of 5.3 ± 0.4 x 105 cells g-1 of sand. Cultured isolates (N = 64) selected for 16S rRNA gene sequencing belonged to the phyla Actinobacteria (58%), Firmicutes (27%) and Proteobacteria (15%). Deep-sequencing of 16S rRNA gene amplicons from 18 dunes demonstrated a high relative abundance of Proteobacteria, particularly enteric bacteria, and a dune-specific-pattern of bacterial community composition that correlated with dune size. Shotgun metagenome sequences of two representative dunes were analyzed and found to have similar relative bacterial abundance, though the relative abundances of eukaryotic, viral and enterobacterial sequences were greater in sand from the dune closer to a camel-pen. Functional analysis revealed patterns similar to those observed in desert soils; however, the increased relative abundance of genes encoding sporulation and dormancy are consistent with the dune microbiome being well-adapted to the exceptionally hyper-arid Qatari desert.
Collapse
Affiliation(s)
- Sara Abdul Majid
- Department of Research, Weill Cornell Medical Qatar, Qatar Foundation, Doha, Qatar
| | - Michael F. Graw
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | | | - Hanh Nguyen
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Renee Richer
- Department of Research, Weill Cornell Medical Qatar, Qatar Foundation, Doha, Qatar
| | - Michel Louge
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Ali A. Sultan
- Department of Research, Weill Cornell Medical Qatar, Qatar Foundation, Doha, Qatar
| | - Patrick Schloss
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anthony G. Hay
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
5
|
Ronca S, Ramond JB, Jones BE, Seely M, Cowan DA. Namib Desert dune/interdune transects exhibit habitat-specific edaphic bacterial communities. Front Microbiol 2015; 6:845. [PMID: 26388839 PMCID: PMC4560024 DOI: 10.3389/fmicb.2015.00845] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/03/2015] [Indexed: 01/20/2023] Open
Abstract
The sand dunes and inter-dune zones of the hyper-arid central Namib Desert represent heterogeneous soil habitats. As little is known about their indigenous edaphic bacterial communities, we aimed to evaluate their diversity and factors of assembly and hypothesized that soil physicochemistry gradients would strongly shape dune/interdune communities. We sampled a total of 125 samples from 5 parallel dune/interdune transects and characterized 21 physico-chemical edaphic parameters coupled with 16S rRNA gene bacterial community fingerprinting using T-RFLP and 454 pyrosequencing. Multivariate analyses of T-RFLP data showed significantly different bacterial communities, related to physico-chemical gradients, in four distinct dune habitats: the dune top, slope, base and interdune zones. Pyrosequencing of 16S rRNA gene amplicon sets showed that each dune zone presented a unique phylogenetic profile, suggesting a high degree of environmental selection. The combined results strongly infer that habitat filtering is an important factor shaping Namib Desert dune bacterial communities, with habitat stability, soil texture and mineral and nutrient contents being the main environmental drivers of bacterial community structures.
Collapse
Affiliation(s)
- Sandra Ronca
- Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria Pretoria, South Africa
| | - Jean-Baptiste Ramond
- Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria Pretoria, South Africa
| | - Brian E Jones
- Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria Pretoria, South Africa ; DuPont Industrial Biosciences Leiden, Netherlands
| | - Mary Seely
- Gobabeb Research and Training Centre Walvis Bay, Namibia ; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand Johannesburg, South Africa
| | - Don A Cowan
- Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria Pretoria, South Africa
| |
Collapse
|