1
|
Liu N, Jiang T, Cui WP, Qi XQ, Li XG, Lu Y, Wu LF, Zhang WJ. The TorRS two component system regulates expression of TMAO reductase in response to high hydrostatic pressure in Vibrio fluvialis. Front Microbiol 2023; 14:1291578. [PMID: 38029070 PMCID: PMC10662104 DOI: 10.3389/fmicb.2023.1291578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
High hydrostatic pressure (HHP) regulated gene expression is one of the most commonly adopted strategies for microbial adaptation to the deep-sea environments. Previously we showed that the HHP-inducible trimethylamine N-oxide (TMAO) reductase improves the pressure tolerance of deep-sea strain Vibrio fluvialis QY27. Here, we investigated the molecular mechanism of HHP-responsive regulation of TMAO reductase TorA. By constructing torR and torS deletion mutants, we demonstrated that the two-component regulator TorR and sensor TorS are responsible for the HHP-responsive regulation of torA. Unlike known HHP-responsive regulatory system, the abundance of torR and torS was not affected by HHP. Complementation of the ΔtorS mutant with TorS altered at conserved phosphorylation sites revealed that the three sites were indispensable for substrate-induced regulation, but only the histidine located in the alternative transmitter domain was involved in pressure-responsive regulation. Taken together, we demonstrated that the induction of TMAO reductase by HHP is mediated through the TorRS system and proposed a bifurcation of signal transduction in pressure-responsive regulation from the substrate-induction. This work provides novel knowledge of the pressure regulated gene expression and will promote the understanding of the microbial adaptation to the deep-sea HHP environment.
Collapse
Affiliation(s)
- Na Liu
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting Jiang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Peng Cui
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qing Qi
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-sea Life Sciences, IDSSE-BGI, Sanya, China
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CAS, Sanya, China
| | - Xue-Gong Li
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-sea Life Sciences, IDSSE-BGI, Sanya, China
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CAS, Sanya, China
| | - Yuan Lu
- College of Information Science & Engineering, Ocean University of China, Qingdao, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CAS, Sanya, China
- Aix Marseille University, CNRS, LCB, Marseille, France
| | - Wei-Jia Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-sea Life Sciences, IDSSE-BGI, Sanya, China
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CAS, Sanya, China
| |
Collapse
|
2
|
Bao XC, Tang HZ, Li XG, Li AQ, Qi XQ, Li DH, Liu SS, Wu LF, Zhang WJ. Bioluminescence Contributes to the Adaptation of Deep-Sea Bacterium Photobacterium phosphoreum ANT-2200 to High Hydrostatic Pressure. Microorganisms 2023; 11:1362. [PMID: 37374864 DOI: 10.3390/microorganisms11061362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Bioluminescence is a common phenomenon in nature, especially in the deep ocean. The physiological role of bacterial bioluminescence involves protection against oxidative and UV stresses. Yet, it remains unclear if bioluminescence contributes to deep-sea bacterial adaptation to high hydrostatic pressure (HHP). In this study, we constructed a non-luminescent mutant of ΔluxA and its complementary strain c-ΔluxA of Photobacterium phosphoreum ANT-2200, a deep-sea piezophilic bioluminescent bacterium. The wild-type strain, mutant and complementary strain were compared from aspects of pressure tolerance, intracellular reactive oxygen species (ROS) level and expression of ROS-scavenging enzymes. The results showed that, despite similar growth profiles, HHP induced the accumulation of intracellular ROS and up-regulated the expression of ROS-scavenging enzymes such as dyp, katE and katG, specifically in the non-luminescent mutant. Collectively, our results suggested that bioluminescence functions as the primary antioxidant system in strain ANT-2200, in addition to the well-known ROS-scavenging enzymes. Bioluminescence contributes to bacterial adaptation to the deep-sea environment by coping with oxidative stress generated from HHP. These results further expanded our understanding of the physiological significance of bioluminescence as well as a novel strategy for microbial adaptation to a deep-sea environment.
Collapse
Affiliation(s)
- Xu-Chong Bao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Hong-Zhi Tang
- University of Chinese Academy of Sciences, Beijing 101408, China
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Xue-Gong Li
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- Hainan Deep-Sea Technology Laboratory, IDSSE-BGI, Institution of Deep-Sea Life Sciences, Sanya 572000, China
| | - An-Qi Li
- University of Chinese Academy of Sciences, Beijing 101408, China
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Xiao-Qing Qi
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- Hainan Deep-Sea Technology Laboratory, IDSSE-BGI, Institution of Deep-Sea Life Sciences, Sanya 572000, China
| | - Deng-Hui Li
- Hainan Deep-Sea Technology Laboratory, IDSSE-BGI, Institution of Deep-Sea Life Sciences, Sanya 572000, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Shan-Shan Liu
- Hainan Deep-Sea Technology Laboratory, IDSSE-BGI, Institution of Deep-Sea Life Sciences, Sanya 572000, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Long-Fei Wu
- LCB, IMM, CNRS, Aix-Marseille University, 13402 Marseille, France
| | - Wei-Jia Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- Hainan Deep-Sea Technology Laboratory, IDSSE-BGI, Institution of Deep-Sea Life Sciences, Sanya 572000, China
| |
Collapse
|
3
|
Piezophilic Phenotype Is Growth Condition Dependent and Correlated with the Regulation of Two Sets of ATPase in Deep-Sea Piezophilic Bacterium Photobacterium profundum SS9. Microorganisms 2023; 11:microorganisms11030637. [PMID: 36985211 PMCID: PMC10054830 DOI: 10.3390/microorganisms11030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Alteration of respiratory components as a function of pressure is a common strategy developed in deep-sea microorganisms, presumably to adapt to high hydrostatic pressure (HHP). While the electron transport chain and terminal reductases have been extensively studied in deep-sea bacteria, little is known about their adaptations for ATP generation. In this study, we showed that the deep-sea bacterium Photobacterium profundum SS9 exhibits a more pronounced piezophilic phenotype when grown in minimal medium supplemented with glucose (MG) than in the routinely used MB2216 complex medium. The intracellular ATP level varied with pressure, but with opposite trends in the two culture media. Between the two ATPase systems encoded in SS9, ATPase-I played a dominant role when cultivated in MB2216, whereas ATPase-II was more abundant in the MG medium, especially at elevated pressure when cells had the lowest ATP level among all conditions tested. Further analyses of the ΔatpI, ΔatpE1 and ΔatpE2 mutants showed that disrupting ATPase-I induced expression of ATPase-II and that the two systems are functionally redundant in MB2216. Collectively, we provide the first examination of the differences and relationships between two ATPase systems in a piezophilic bacterium, and expanded our understanding of the involvement of energy metabolism in pressure adaptation.
Collapse
|
4
|
Fan S, Wang M, Ding W, Li YX, Zhang YZ, Zhang W. Scientific and technological progress in the microbial exploration of the hadal zone. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:127-137. [PMID: 37073349 PMCID: PMC10077178 DOI: 10.1007/s42995-021-00110-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 05/11/2021] [Indexed: 05/03/2023]
Abstract
The hadal zone is the deepest point in the ocean with a depth that exceeds 6000 m. Exploration of the biological communities in hadal zone began in the 1950s (the first wave of hadal exploration) and substantial advances have been made since the turn of the twenty-first century (the second wave of hadal exploration), resulting in a focus on the hadal sphere as a research hotspot because of its unique physical and chemical conditions. A variety of prokaryotes are found in the hadal zone. The mechanisms used by these prokaryotes to manage the high hydrostatic pressures and acquire energy from the environment are of substantial interest. Moreover, the symbioses between microbes and hadal animals have barely been studied. In addition, equipment has been developed that can now mimic hadal environments in the laboratory and allow cultivation of microbes under simulated in situ pressure. This review provides a brief summary of recent progress in the mechanisms by which microbes adapt to high hydrostatic pressures, manage limited energy resources and coexist with animals in the hadal zone, as well as technical developments in the exploration of hadal microbial life.
Collapse
Affiliation(s)
- Shen Fan
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Meng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Wei Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Yong-Xin Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
5
|
Lasa A, Auguste M, Lema A, Oliveri C, Borello A, Taviani E, Bonello G, Doni L, Millard AD, Bruto M, Romalde JL, Yakimov M, Balbi T, Pruzzo C, Canesi L, Vezzulli L. A deep-sea bacterium related to coastal marine pathogens. Environ Microbiol 2021; 23:5349-5363. [PMID: 34097814 PMCID: PMC8519021 DOI: 10.1111/1462-2920.15629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 06/06/2021] [Indexed: 11/29/2022]
Abstract
Evolution of virulence traits from adaptation to environmental niches other than the host is probably a common feature of marine microbial pathogens, whose knowledge might be crucial to understand their emergence and pathogenetic potential. Here, we report genome sequence analysis of a novel marine bacterial species, Vibrio bathopelagicus sp. nov., isolated from warm bathypelagic waters (3309 m depth) of the Mediterranean Sea. Interestingly, V. bathopelagicus sp. nov. is closely related to coastal Vibrio strains pathogenic to marine bivalves. V. bathopelagicus sp. nov. genome encodes genes involved in environmental adaptation to the deep-sea but also in virulence, such as the R5.7 element, MARTX toxin cluster, Type VI secretion system and zinc-metalloprotease, previously associated with Vibrio infections in farmed oysters. The results of functional in vitro assays on immunocytes (haemocytes) of the Mediterranean mussel Mytilus galloprovincialis and the Pacific oyster Crassostrea gigas, and of the early larval development assay in Mytilus support strong toxicity of V. bathopelagicus sp. nov. towards bivalves. V. bathopelagicus sp. nov., isolated from a remote Mediterranean bathypelagic site, is an example of a planktonic marine bacterium with genotypic and phenotypic traits associated with animal pathogenicity, which might have played an evolutionary role in the origin of coastal marine pathogens.
Collapse
Affiliation(s)
- Aide Lasa
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
- Department of Microbiology and ParasitologyCIBUS‐Facultade de Bioloxía & Institute CRETUS, Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Manon Auguste
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Alberto Lema
- Department of Microbiology and ParasitologyCIBUS‐Facultade de Bioloxía & Institute CRETUS, Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Caterina Oliveri
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Alessio Borello
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Elisa Taviani
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Guido Bonello
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Lapo Doni
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Andrew D. Millard
- Department of Genetics and Genome BiologyUniversity of LeicesterUniversity Road, LeicesterUK
| | - Maxime Bruto
- Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff CS 90074Roscoff CedexF‐29688France
| | - Jesus L. Romalde
- Department of Microbiology and ParasitologyCIBUS‐Facultade de Bioloxía & Institute CRETUS, Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Michail Yakimov
- Institute of Biological Resources and Marine Biotechnology, National Research Council (IRBIM‐CNR)Messina98122Italy
| | - Teresa Balbi
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Carla Pruzzo
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| |
Collapse
|
6
|
Hauschild P, Vogel RF, Hilgarth M. Influence of the packaging atmosphere and presence of co-contaminants on the growth of photobacteria on chicken meat. Int J Food Microbiol 2021; 351:109264. [PMID: 34098468 DOI: 10.1016/j.ijfoodmicro.2021.109264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Fresh meat is commonly packaged in modified atmosphere to decelerate spoilage processes. The applied gas mixture affects the growth of spoilage organisms and selectively shapes the spoilage community. In this study, we investigated the impact of O2 and CO2 on the growth of Photobacterium (P.) phosphoreum and P. carnosum strains in situ on chicken meat by packaging under different modified atmospheres (air, 70% O2/30% CO2, 70% N2/30% CO2, 100% N2). Combination of 70% O2 and 30% CO2 resulted in significant growth reduction of the analyzed strains, suggesting inhibitory effects of both gases in combination. In contrast, 30% CO2 alone had only a minor effect and photobacteria are supposed to have a growth advantage over other meat spoilers in this atmosphere. Additionally, single growth of the strains in the different atmospheres was compared when challenged with the presence of Pseudomonas (Ps.) fragi or Brochothrix (B.) thermosphacta as prominent co-contaminants in different ratios (10:1, 1:1, 1:10). Presence of co-contaminants resulted in increased cell numbers of P. carnosum TMW2.2149 but reduced or unchanged cell numbers of P. phosphoreum TMW2.2103 in most packaging atmospheres. The initial ratio of photobacteria and co-contaminants defined the relative abundance during storage but did not change the type of the interaction. Our results suggest either a commensalistic (P. carnosum) or competitive interaction (P. phosphoreum) of photobacteria and co-contaminants on modified atmosphere packaged chicken, respectively. Furthermore, in a mix comprising seven prominent spoilers, strains of both Photobacterium species prevailed as a constant part of the spoilage microbiome during 7 days of refrigerated storage on chicken meat packaged under O2/CO2 atmosphere.
Collapse
Affiliation(s)
- Philippa Hauschild
- Lehrstuhl Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany.
| | - Rudi F Vogel
- Lehrstuhl Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany.
| | - Maik Hilgarth
- Lehrstuhl Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany.
| |
Collapse
|
7
|
Holomycin, an Antibiotic Secondary Metabolite, Is Required for Biofilm Formation by the Native Producer Photobacterium galatheae S2753. Appl Environ Microbiol 2021; 87:AEM.00169-21. [PMID: 33771780 DOI: 10.1128/aem.00169-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/18/2021] [Indexed: 01/24/2023] Open
Abstract
While the effects of antibiotics on microorganisms are widely studied, it remains less well understood how antibiotics affect the physiology of the native producing organisms. Here, using a marine bacterium, Photobacterium galatheae S2753, that produces the antibiotic holomycin, we generated a holomycin-deficient strain by in-frame deletion of hlmE, the core gene responsible for holomycin production. Mass spectrometry analysis of cell extracts confirmed that the ΔhlmE strain did not produce holomycin and that the mutant was devoid of antibacterial activity. Biofilm formation of the ΔhlmE strain was significantly reduced compared to that of wild-type S2753 and was restored in an hlmE complementary mutant. Consistent with this, exogenous holomycin, but not its dimethylated and less antibacterial derivative, S,S'-dimethyl holomycin, restored the biofilm formation of the ΔhlmE strain. Furthermore, zinc starvation was found to be essential for both holomycin production and biofilm formation of S2753, although the molecular mechanism remains elusive. Collectively, these data suggest that holomycin promotes biofilm formation of S2753 via its ene-disulfide group. Lastly, the addition of holomycin at subinhibitory concentrations also enhanced the biofilms of four other Vibrionaceae strains. P. galatheae likely gains an ecological advantage from producing holomycin as both an antibiotic and a biofilm stimulator, which facilitates nutrition acquisition and protects P. galatheae from environmental stresses. Studying the function of antibiotic compounds in the native producer will shed light on their roles in nature and could point to novel bioprospecting strategies.IMPORTANCE Despite the societal impact of antibiotics, their ecological functions remain elusive and have mostly been studied by exposing nonproducing bacteria to subinhibitory concentrations. Here, we studied the effects of the antibiotic holomycin on its native producer, Photobacterium galatheae S2753, a Vibrionaceae bacterium. Holomycin provides a distinct advantage to S2753 both as an antibiotic and by enhancing biofilm formation in the producer. Vibrionaceae species successfully thrive in global marine ecosystems, where they play critical ecological roles as free-living, symbiotic, or pathogenic bacteria. Genome mining has demonstrated that many have the potential to produce several bioactive compounds, including P. galatheae To unravel the contribution of the microbial metabolites to the development of marine microbial ecosystems, better insight into the function of these compounds in the producing organisms is needed. Our finding provides a model to pursue this and highlights the ecological importance of antibiotics to the fitness of the producing organisms.
Collapse
|
8
|
Chitin Degradation Machinery and Secondary Metabolite Profiles in the Marine Bacterium Pseudoalteromonas rubra S4059. Mar Drugs 2021; 19:md19020108. [PMID: 33673118 PMCID: PMC7917724 DOI: 10.3390/md19020108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Genome mining of pigmented Pseudoalteromonas has revealed a large potential for the production of bioactive compounds and hydrolytic enzymes. The purpose of the present study was to explore this bioactivity potential in a potent antibiotic and enzyme producer, Pseudoalteromonas rubra strain S4059. Proteomic analyses (data are available via ProteomeXchange with identifier PXD023249) indicated that a highly efficient chitin degradation machinery was present in the red-pigmented P. rubra S4059 when grown on chitin. Four GH18 chitinases and two GH20 hexosaminidases were significantly upregulated under these conditions. GH19 chitinases, which are not common in bacteria, are consistently found in pigmented Pseudoalteromonas, and in S4059, GH19 was only detected when the bacterium was grown on chitin. To explore the possible role of GH19 in pigmented Pseudoalteromonas, we developed a protocol for genetic manipulation of S4059 and deleted the GH19 chitinase, and compared phenotypes of the mutant and wild type. However, none of the chitin degrading ability, secondary metabolite profile, or biofilm-forming capacity was affected by GH19 deletion. In conclusion, we developed a genetic manipulation protocol that can be used to unravel the bioactive potential of pigmented pseudoalteromonads. An efficient chitinolytic enzyme cocktail was identified in S4059, suggesting that this strain could be a candidate with industrial potential.
Collapse
|
9
|
Tang X, Yu L, Yi Y, Wang J, Wang S, Meng C, Liu S, Hao Y, Zhang Y, Cao X, Jian H, Xiao X. Phylogenomic analysis reveals a two-stage process of the evolutionary transition of Shewanella from the upper ocean to the hadal zone. Environ Microbiol 2020; 23:744-756. [PMID: 32657519 DOI: 10.1111/1462-2920.15162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/21/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022]
Abstract
Shewanella strains are characterized by versatile metabolic capabilities, resulting in their wide distribution in the ocean at different depths. Considering that particle sedimentation is an important dynamic process in the ocean, we hypothesized that hadal Shewanella species evolved from the upper ocean. In this study, we isolated three novel Shewanella strains from deep-sea sediments in the Southwest Indian Ocean. Genome sequencing indicated that strains YLB-06 and YLB-08 represent two novel species in the genus Shewanella. Through phylogenomic analysis, we showed that speciation and genomic changes in marine Shewanella strains are related to water depth. We further confirmed the aforementioned hypothesis and revealed a two-stage process of the evolutionary transition of Shewanella from the upper ocean to the hadal zone by comparative genomics and gene gain/loss analysis. Finally, the transcriptomic analysis demonstrated that recently obtained genes are strictly repressed and may thus play a minor role in the response to environmental changes.
Collapse
Affiliation(s)
- Xixiang Tang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.,China Ocean Sample Repository (Biology), Xiamen, 361005, China
| | - Libo Yu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.,China Ocean Sample Repository (Biology), Xiamen, 361005, China
| | - Yi Yi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiahua Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Siyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Canxing Meng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shunzhang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yali Hao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaorong Cao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.,China Ocean Sample Repository (Biology), Xiamen, 361005, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| |
Collapse
|
10
|
Li XG, Zhang WJ, Xiao X, Jian HH, Jiang T, Tang HZ, Qi XQ, Wu LF. Pressure-Regulated Gene Expression and Enzymatic Activity of the Two Periplasmic Nitrate Reductases in the Deep-Sea Bacterium Shewanella piezotolerans WP3. Front Microbiol 2018; 9:3173. [PMID: 30622525 PMCID: PMC6308320 DOI: 10.3389/fmicb.2018.03173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/07/2018] [Indexed: 01/06/2023] Open
Abstract
Shewanella species are widely distributed in marine environments, from the shallow coasts to the deepest sea bottom. Most Shewanella species possess two isoforms of periplasmic nitrate reductases (NAP-α and NAP-β) and are able to generate energy through nitrate reduction. However, the contributions of the two NAP systems to bacterial deep-sea adaptation remain unclear. In this study, we found that the deep-sea denitrifier Shewanella piezotolerans WP3 was capable of performing nitrate respiration under high hydrostatic pressure (HHP) conditions. In the wild-type strain, NAP-β played a dominant role and was induced by both the substrate and an elevated pressure, whereas NAP-α was constitutively expressed at a relatively lower level. Genetic studies showed that each NAP system alone was sufficient to fully sustain nitrate-dependent growth and that both NAP systems exhibited substrate and pressure inducible expression patterns when the other set was absent. Biochemical assays further demonstrated that NAP-α had a higher tolerance to elevated pressure. Collectively, we report for the first time the distinct properties and contributions of the two NAP systems to nitrate reduction under different pressure conditions. The results will shed light on the mechanisms of bacterial HHP adaptation and nitrogen cycling in the deep-sea environment.
Collapse
Affiliation(s)
- Xue-Gong Li
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Sanya, China
| | - Wei-Jia Zhang
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Sanya, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hua-Hua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Jiang
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Zhi Tang
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qing Qi
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Sanya, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Sanya, China.,Aix Marseille Université, CNRS, LCB, Marseille, France
| |
Collapse
|
11
|
Yin QJ, Zhang WJ, Qi XQ, Zhang SD, Jiang T, Li XG, Chen Y, Santini CL, Zhou H, Chou IM, Wu LF. High Hydrostatic Pressure Inducible Trimethylamine N-Oxide Reductase Improves the Pressure Tolerance of Piezosensitive Bacteria Vibrio fluvialis. Front Microbiol 2018; 8:2646. [PMID: 29375513 PMCID: PMC5767261 DOI: 10.3389/fmicb.2017.02646] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/19/2017] [Indexed: 11/20/2022] Open
Abstract
High hydrostatic pressure (HHP) exerts severe effects on cellular processes including impaired cell division, abolished motility and affected enzymatic activities. Transcriptomic and proteomic analyses showed that bacteria switch the expression of genes involved in multiple energy metabolism pathways to cope with HHP. We sought evidence of a changing bacterial metabolism by supplying appropriate substrates that might have beneficial effects on the bacterial lifestyle at elevated pressure. We isolated a piezosensitive marine bacterium Vibrio fluvialis strain QY27 from the South China Sea. When trimethylamine N-oxide (TMAO) was used as an electron acceptor for energy metabolism, QY27 exhibited a piezophilic-like phenotype with an optimal growth at 30 MPa. Raman spectrometry and biochemistry analyses revealed that both the efficiency of the TMAO metabolism and the activity of the TMAO reductase increased under high pressure conditions. Among the two genes coding for TMAO reductase catalytic subunits, the expression level and enzymatic activity of TorA was up-regulated by elevated pressure. Furthermore, a genetic interference assay with the CRISPR-dCas9 system demonstrated that TorA is essential for underpinning the improved pressure tolerance of QY27. We extended the study to Vibrio fluvialis type strain ATCC33809 and observed the same phenotype of TMAO-metabolism improved the pressure tolerance. These results provide compelling evidence for the determinant role of metabolism in the adaption of bacteria to the deep-sea ecosystems with HHP.
Collapse
Affiliation(s)
- Qun-Jian Yin
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China
| | - Wei-Jia Zhang
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China.,CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xiao-Qing Qi
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China
| | - Sheng-Da Zhang
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ting Jiang
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Gong Li
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China.,CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ying Chen
- Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Claire-Lise Santini
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China.,LCB UMR 7283, CNRS-Marseille, Aix-Marseille Université, Marseille, France
| | - Hao Zhou
- Engineering Laboratory of Engineering Department, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - I-Ming Chou
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China.,LCB UMR 7283, CNRS-Marseille, Aix-Marseille Université, Marseille, France
| |
Collapse
|