1
|
Jarman OD, Hirst J. Membrane-domain mutations in respiratory complex I impede catalysis but do not uncouple proton pumping from ubiquinone reduction. PNAS NEXUS 2022; 1:pgac276. [PMID: 36712358 PMCID: PMC9802314 DOI: 10.1093/pnasnexus/pgac276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
Respiratory complex I [NADH:ubiquinone (UQ) oxidoreductase] captures the free energy released from NADH oxidation and UQ reduction to pump four protons across an energy-transducing membrane and power ATP synthesis. Mechanisms for long-range energy coupling in complex I have been proposed from structural data but not yet evaluated by robust biophysical and biochemical analyses. Here, we use the powerful bacterial model system Paracoccus denitrificans to investigate 14 mutations of key residues in the membrane-domain Nqo13/ND4 subunit, defining the rates and reversibility of catalysis and the number of protons pumped per NADH oxidized. We reveal new insights into the roles of highly conserved charged residues in lateral energy transduction, confirm the purely structural role of the Nqo12/ND5 transverse helix, and evaluate a proposed hydrated channel for proton uptake. Importantly, even when catalysis is compromised the enzyme remains strictly coupled (four protons are pumped per NADH oxidized), providing no evidence for escape cycles that circumvent blocked proton-pumping steps.
Collapse
Affiliation(s)
- Owen D Jarman
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
2
|
Lee Y, Haapanen O, Altmeyer A, Kühlbrandt W, Sharma V, Zickermann V. Ion transfer mechanisms in Mrp-type antiporters from high resolution cryoEM and molecular dynamics simulations. Nat Commun 2022; 13:6091. [PMID: 36241630 PMCID: PMC9568556 DOI: 10.1038/s41467-022-33640-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple resistance and pH adaptation (Mrp) cation/proton antiporters are essential for growth of a variety of halophilic and alkaliphilic bacteria under stress conditions. Mrp-type antiporters are closely related to the membrane domain of respiratory complex I. We determined the structure of the Mrp antiporter from Bacillus pseudofirmus by electron cryo-microscopy at 2.2 Å resolution. The structure resolves more than 99% of the sidechains of the seven membrane subunits MrpA to MrpG plus 360 water molecules, including ~70 in putative ion translocation pathways. Molecular dynamics simulations based on the high-resolution structure revealed details of the antiport mechanism. We find that switching the position of a histidine residue between three hydrated pathways in the MrpA subunit is critical for proton transfer that drives gated trans-membrane sodium translocation. Several lines of evidence indicate that the same histidine-switch mechanism operates in respiratory complex I.
Collapse
Affiliation(s)
- Yongchan Lee
- grid.419494.50000 0001 1018 9466Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany ,grid.268441.d0000 0001 1033 6139Present Address: Graduate School of Medical Life Science, Yokohama City University, 230-0045 Kanagawa, Japan
| | - Outi Haapanen
- grid.7737.40000 0004 0410 2071Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Anton Altmeyer
- grid.7839.50000 0004 1936 9721Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany ,grid.7839.50000 0004 1936 9721Centre for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- grid.419494.50000 0001 1018 9466Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Vivek Sharma
- grid.7737.40000 0004 0410 2071Department of Physics, University of Helsinki, 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071HiLIFE Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Volker Zickermann
- grid.7839.50000 0004 1936 9721Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany ,grid.7839.50000 0004 1936 9721Centre for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Haja DK, Adams MWW. pH Homeostasis and Sodium Ion Pumping by Multiple Resistance and pH Antiporters in Pyrococcus furiosus. Front Microbiol 2021; 12:712104. [PMID: 34484150 PMCID: PMC8415708 DOI: 10.3389/fmicb.2021.712104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple Resistance and pH (Mrp) antiporters are seven-subunit complexes that couple transport of ions across the membrane in response to a proton motive force (PMF) and have various physiological roles, including sodium ion sensing and pH homeostasis. The hyperthermophilic archaeon Pyrococcus furiosus contains three copies of Mrp encoding genes in its genome. Two are found as integral components of two respiratory complexes, membrane bound hydrogenase (MBH) and the membrane bound sulfane sulfur reductase (MBS) that couple redox activity to sodium translocation, while the third copy is a stand-alone Mrp. Sequence alignments show that this Mrp does not contain an energy-input (PMF) module but contains all other predicted functional Mrp domains. The P. furiosus Mrp deletion strain exhibits no significant changes in optimal pH or sodium ion concentration for growth but is more sensitive to medium acidification during growth. Cell suspension hydrogen gas production assays using the deletion strain show that this Mrp uses sodium as the coupling ion. Mrp likely maintains cytoplasmic pH by exchanging protons inside the cell for extracellular sodium ions. Deletion of the MBH sodium-translocating module demonstrates that hydrogen gas production is uncoupled from ion pumping and provides insights into the evolution of this Mrp-containing respiratory complex.
Collapse
Affiliation(s)
- Dominik K Haja
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
4
|
Structure of the Dietzia Mrp complex reveals molecular mechanism of this giant bacterial sodium proton pump. Proc Natl Acad Sci U S A 2020; 117:31166-31176. [PMID: 33229520 PMCID: PMC7733839 DOI: 10.1073/pnas.2006276117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple resistance and pH adaptation (Mrp) complexes are the most sophisticated known cation/proton exchangers and are essential for the survival of a vast variety of alkaliphilic and/or halophilic microorganisms. Moreover, this family of antiporters represents the ancestor of cation pumps in nearly all known redox-driven transporter complexes, including the complex I of the respiratory chain. For the Mrp complex, an experimental structure is lacking. We now report the structure of Mrp complex at 3.0-Å resolution solved using the single-particle cryo-EM method. The structure-inspired functional study of Mrp provides detailed information for further biophysical and biochemical investigation of the intriguingly pumping mechanism and physiological functions of this complex, as well as for exploring its potential as a therapeutic drug target. Multiple resistance and pH adaptation (Mrp) complexes are sophisticated cation/proton exchangers found in a vast variety of alkaliphilic and/or halophilic microorganisms, and are critical for their survival in highly challenging environments. This family of antiporters is likely to represent the ancestor of cation pumps found in many redox-driven transporter complexes, including the complex I of the respiratory chain. Here, we present the three-dimensional structure of the Mrp complex from a Dietzia sp. strain solved at 3.0-Å resolution using the single-particle cryoelectron microscopy method. Our structure-based mutagenesis and functional analyses suggest that the substrate translocation pathways for the driving substance protons and the substrate sodium ions are separated in two modules and that symmetry-restrained conformational change underlies the functional cycle of the transporter. Our findings shed light on mechanisms of redox-driven primary active transporters, and explain how driving substances of different electric charges may drive similar transport processes.
Collapse
|
5
|
Schubiger CB, Hoang KHT, Häse CC. Sodium antiporters of Pseudomonas aeruginosa in challenging conditions: effects on growth, biofilm formation, and swarming motility. J Genet Eng Biotechnol 2020; 18:4. [PMID: 32009221 PMCID: PMC6995807 DOI: 10.1186/s43141-020-0019-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/06/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa is a bacterial pathogen that can cause grave and sometimes chronic infections in patients with weakened immune systems and cystic fibrosis. It is expected that sodium/proton transporters in the cellular membrane are crucial for the organism's survival and growth under certain conditions, since many cellular processes rely on the maintenance of Na+ and H+ transmembrane gradients. RESULTS This study focused on the role of the primary and secondary proton and/or sodium pumps Mrp, Nuo, NhaB, NhaP, and NQR for growth, biofilm formation, and swarming motility in P. aeruginosa. Using mutants with gene deletions, we investigated the impact of each sodium pump's absence on the overall growth, biofilm formation, motility, and weak acid tolerance of the organism. We found that the absence of some, but not all, of the sodium pumps have a deleterious effect on the different phenotypes of P. aeruginosa. CONCLUSION The absence of the Mrp sodium/proton antiporter was clearly important in the organism's ability to survive and function in environments of higher pH and sodium concentrations, while the absence of Complex I, which is encoded by the nuo genes, had some consistent impact on the organism's growth regardless of the pH and sodium concentration of the environment.
Collapse
Affiliation(s)
- Carla B Schubiger
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Kelli H T Hoang
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA. .,College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA.
| | - Claudia C Häse
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
6
|
Zhang XC, Li B. Towards understanding the mechanisms of proton pumps in Complex-I of the respiratory chain. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-019-00094-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
7
|
Schleicher L, Muras V, Claussen B, Pfannstiel J, Blombach B, Dibrov P, Fritz G, Steuber J. Vibrio natriegens as Host for Expression of Multisubunit Membrane Protein Complexes. Front Microbiol 2018; 9:2537. [PMID: 30410475 PMCID: PMC6209661 DOI: 10.3389/fmicb.2018.02537] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/04/2018] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is a convenient host for the expression of proteins, but the heterologous production of large membrane protein complexes often is hampered by the lack of specific accessory genes required for membrane insertion or cofactor assembly. In this study we introduce the non-pathogenic and fast-growing Vibrio natriegens as a suitable expression host for membrane-bound proteins from Vibrio cholerae. We achieved production of the primary Na+ pump, the NADH:quinone oxidoreductase (NQR), from V. cholerae in an active state, as indicated by increased overall NADH:quinone oxidoreduction activity of membranes from the transformed V. natriegens, and the sensitivity toward Ag+, a specific inhibitor of the NQR. Complete assembly of V. cholerae NQR expressed in V. natriegens was demonstrated by BN PAGE followed by activity staining. The secondary transport system Mrp from V. cholerae, another membrane-bound multisubunit complex, was also produced in V. natriegens in a functional state, as demonstrated by in vivo Li+ transport. V. natriegens is a promising expression host for the production of membrane protein complexes from Gram-negative pathogens.
Collapse
Affiliation(s)
- Lena Schleicher
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Valentin Muras
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Björn Claussen
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Jens Pfannstiel
- Mass Spectrometry Core Facility, University of Hohenheim, Stuttgart, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Pavel Dibrov
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Günter Fritz
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany.,Institute for Neuropathology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Julia Steuber
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
8
|
Takahashi T, Krulwich TA, Ito M. A Hydrophobic Small Protein, BpOF4_01690, Is Critical for Alkaliphily of Alkaliphilic Bacillus pseudofirmus OF4. Front Microbiol 2018; 9:1994. [PMID: 30210472 PMCID: PMC6120979 DOI: 10.3389/fmicb.2018.01994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/08/2018] [Indexed: 11/17/2022] Open
Abstract
A monocistronic small protein, BpOF4_01690, was annotated in alkaliphilic Bacillus pseudofirmus OF4. It comprises 59 amino acids and is hydrophobic. Importantly, homologs of this protein were identified only in alkaliphiles. In this study, a mutant with a BpOF4_01690 gene deletion (designated Δ01690) exhibited weaker growth than that of the wild type in both malate-based defined and glucose-based defined media under low-sodium conditions at pH 10.5. Additionally, the enzymatic activity of the respiratory chain of Δ01690 was much lower than that of the wild type. These phenotypes were similar to those of a ctaD deletion mutant and an atpB-F deletion mutant. Therefore, we hypothesize that BpOF4_01690 plays a critical role in oxidative phosphorylation under highly alkaline conditions.
Collapse
Affiliation(s)
| | - Terry A. Krulwich
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Masahiro Ito
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Japan
| |
Collapse
|
9
|
Ito M, Morino M, Krulwich TA. Mrp Antiporters Have Important Roles in Diverse Bacteria and Archaea. Front Microbiol 2017; 8:2325. [PMID: 29218041 PMCID: PMC5703873 DOI: 10.3389/fmicb.2017.02325] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/10/2017] [Indexed: 11/13/2022] Open
Abstract
Mrp (Multiple resistance and pH) antiporter was identified as a gene complementing an alkaline-sensitive mutant strain of alkaliphilic Bacillus halodurans C-125 in 1990. At that time, there was no example of a multi-subunit type Na+/H+ antiporter comprising six or seven hydrophobic proteins, and it was newly designated as the monovalent cation: proton antiporter-3 (CPA3) family in the classification of transporters. The Mrp antiporter is broadly distributed among bacteria and archaea, not only in alkaliphiles. Generally, all Mrp subunits, mrpA–G, are required for enzymatic activity. Two exceptions are Mrp from the archaea Methanosarcina acetivorans and the eubacteria Natranaerobius thermophilus, which are reported to sustain Na+/H+ antiport activity with the MrpA subunit alone. Two large subunits of the Mrp antiporter, MrpA and MrpD, are homologous to membrane-embedded subunits of the respiratory chain complex I, NuoL, NuoM, and NuoN, and the small subunit MrpC has homology with NuoK. The functions of the Mrp antiporter include sodium tolerance and pH homeostasis in an alkaline environment, nitrogen fixation in Schizolobium meliloti, bile salt tolerance in Bacillus subtilis and Vibrio cholerae, arsenic oxidation in Agrobacterium tumefaciens, pathogenesis in Pseudomonas aeruginosa and Staphylococcus aureus, and the conversion of energy involved in metabolism and hydrogen production in archaea. In addition, some Mrp antiporters transport K+ and Ca2+ instead of Na+, depending on the environmental conditions. Recently, the molecular structure of the respiratory chain complex I has been elucidated by others, and details of the mechanism by which it transports protons are being clarified. Based on this, several hypotheses concerning the substrate transport mechanism in the Mrp antiporter have been proposed. The MrpA and MrpD subunits, which are homologous to the proton transport subunit of complex I, are involved in the transport of protons and their coupling cations. Herein, we outline other recent findings on the Mrp antiporter.
Collapse
Affiliation(s)
- Masahiro Ito
- Graduate School of Life Sciences, Toyo University, Gunma, Japan.,Bio-Nano Electronics Research Center, Toyo University, Kawagoe, Japan
| | - Masato Morino
- Graduate School of Life Sciences, Toyo University, Gunma, Japan.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Terry A Krulwich
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Functional Role of MrpA in the MrpABCDEFG Na+/H+ Antiporter Complex from the Archaeon Methanosarcina acetivorans. J Bacteriol 2016; 199:JB.00662-16. [PMID: 27799324 DOI: 10.1128/jb.00662-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/18/2016] [Indexed: 11/20/2022] Open
Abstract
The multisubunit cation/proton antiporter 3 family, also called Mrp, is widely distributed in all three phylogenetic domains (Eukarya, Bacteria, and Archaea). Investigations have focused on Mrp complexes from the domain Bacteria to the exclusion of Archaea, with a consensus emerging that all seven subunits are required for Na+/H+ antiport activity. The MrpA subunit from the MrpABCDEFG Na+/H+ antiporter complex of the archaeon Methanosarcina acetivorans was produced in antiporter-deficient Escherichia coli strains EP432 and KNabc and biochemically characterized to determine the role of MrpA in the complex. Both strains containing MrpA grew in the presence of up to 500 mM NaCl and pH values up to 11.0 with no added NaCl. Everted vesicles from the strains containing MrpA were able to generate a NADH-dependent pH gradient (ΔpH), which was abated by the addition of monovalent cations. The apparent Km values for Na+ and Li+ were similar and ranged from 31 to 63 mM, whereas activity was too low to determine the apparent Km for K+ Optimum activity was obtained between pH 7.0 and 8.0. Homology molecular modeling identified two half-closed symmetry-related ion translocation channels that are linked, forming a continuous path from the cytoplasm to the periplasm, analogous to the NuoL subunit of complex I. Bioinformatics analyses revealed genes encoding homologs of MrpABCDEFG in metabolically diverse methane-producing species. Overall, the results advance the biochemical, evolutionary, and physiological understanding of Mrp complexes that extends to the domain Archaea IMPORTANCE: The work is the first reported characterization of an Mrp complex from the domain Archaea, specifically methanogens, for which Mrp is important for acetotrophic growth. The results show that the MrpA subunit is essential for antiport activity and, importantly, that not all seven subunits are required, which challenges current dogma for Mrp complexes from the domain Bacteria A mechanism is proposed in which an MrpAD subcomplex catalyzes Na+/H+ antiport independent of an MrpBCEFG subcomplex, although the activity of the former is modulated by the latter. Properties of MrpA strengthen proposals that the Mrp complex is of ancient origin and that subunits were recruited to evolve the ancestral complex I. Finally, bioinformatics analyses indicate that Mrp complexes function in diverse methanogenic pathways.
Collapse
|
11
|
International Conference on Extremophiles 2016. Extremophiles 2016; 21:1-2. [PMID: 28013384 DOI: 10.1007/s00792-016-0906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|