1
|
Wang X, Wei J, Tang F, Chen F. Effects of blue light on pigment and citrinin production in Monascus ruber M7 via MrcreD, encoding an arrestin-like protein. Int J Biol Macromol 2024:138604. [PMID: 39662546 DOI: 10.1016/j.ijbiomac.2024.138604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Blue light, as an important environmental factor, greatly affects the production of Monascus pigments (MPs) and citrinin in Monascus spp.. In this study, the deletion, complementation, and overexpression mutants of MrcreD from Monascus ruber M7, which encodes an arrestin-like protein, were constructed and cultivated on PDA (Potato dextrose agar) medium to study the effects of blue light on MPs and citrinin production. The results revealed that blue light inhibited the formation of cleistothecia, conidia, and the production of MPs and citrinin in M. ruber M7. However, under blue light, in contrast to M. ruber M7, MrcreD-overexpressing strain displayed increased production of extracellular yellow pigments and intracellular orange pigments, whereas MrcreD-deleted strain showed enhanced production of intracellular yellow and orange pigments. Then, the extracellular citrinin production decreased in both mutants. The RT-qPCR results demonstrated that compared to M. ruber M7, overexpressing MrcreD increased the expression of genes involved in MPs biosynthesis, and decreased the genes involved in citrinin biosynthesis, while deleting MrcreD increased the expression of citrinin-relative genes. This is the first time that the functions of MrcreD gene in filamentous fungi have been researched under blue light, and it provides a strategy for exploring complex light-regulatory systems in filamentous fungi.
Collapse
Affiliation(s)
- Xiaodi Wang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jingyi Wei
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fufang Tang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fusheng Chen
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; School of Life Science, Guizhou Normal University, Universities Town, Huaxi District, Guiyang, Guizhou 550025, China.
| |
Collapse
|
2
|
Gao J, Song C, Zhang J, Hu Y, Shao Y. Mrada3 is required for sexual reproduction and secondary metabolite production in industrial fungi Monascus strain. J Appl Microbiol 2022; 133:591-606. [PMID: 35451171 DOI: 10.1111/jam.15586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/23/2022] [Accepted: 04/18/2022] [Indexed: 11/27/2022]
Abstract
AIMS Monascus spp. are valuable industrial fungi for producing beneficial compounds. Since sporulation is often coupled with the production of secondary metabolites, the current study was performed to investigate how Mrada3 regulated asexual and sexual development and the production of edible pigments and mycotoxin. METHODS AND RESULTS The functional characteristics of Mrada3 were identified by gene deletion and overexpression in Monascus ruber M7 (the wild-type, WT). The results revealed that the ΔMrada3 strain aborted sexual development, but it produced many more conidia than WT. RNA-Seq data showed the deletion of Mrada3 altered the expression levels of partial genes involved in sexual and asexual development. In addition, the deletion of Mrada3 also resulted in slower growth, lower pigment production, and increased citrinin yield at the late period. For the Mrada3-overexpressed strain, the number of ascospores and pigment content were significantly higher than those of WT, but citrinin was slightly lower than that of WT. CONCLUSIONS The Mrada3 gene plays a vital role in the sporulation development and secondary metabolism of Monascus species. SIGNIFICANCE AND IMPACT OF THE STUDY Mrada3 is first identified as an essential regulator for sexual development in Monascus species, enriching the regulatory knowledge of sexual development in filamentous fungi.
Collapse
Affiliation(s)
- Jing Gao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Cuina Song
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei International Scientific and Technological Cooperation Base of Traditionally Fermented Foods, Wuhan, Hubei, China
| | - Yifan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei International Scientific and Technological Cooperation Base of Traditionally Fermented Foods, Wuhan, Hubei, China
| |
Collapse
|
3
|
Le LTHL, Yoo W, Jeon S, Kim KK, Kim TD. Characterization and Immobilization of a Novel SGNH Family Esterase ( LaSGNH1) from Lactobacillus acidophilus NCFM. Int J Mol Sci 2019; 21:ijms21010091. [PMID: 31877740 PMCID: PMC6981805 DOI: 10.3390/ijms21010091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
The SGNH family esterases are highly effective biocatalysts due to their strong catalytic efficiencies, great stabilities, relatively small sizes, and ease of immobilization. Here, a novel SGNH family esterase (LaSGNH1) from Lactobacillus acidophilus NCFM, which has homologues in many Lactobacillus species, was identified, characterized, and immobilized. LaSGNH1 is highly active towards acetate- or butyrate-containing compounds, such as p-nitrophenyl acetate or 1-naphthyl acetate. Enzymatic properties of LaSGNH1, including thermal stability, optimum pH, chemical stability, and urea stability, were investigated. Interestingly, LaSGNH1 displayed a wide range of substrate specificity that included glyceryl tributyrate, tert-butyl acetate, and glucose pentaacetate. Furthermore, immobilization of LaSGNH1 by crosslinked enzyme aggregates (CLEAs) showed enhanced thermal stability and efficient recycling property. In summary, this work paves the way for molecular understandings and industrial applications of a novel SGNH family esterase (LaSGNH1) from Lactobacillus acidophilus.
Collapse
Affiliation(s)
- Ly Thi Huong Luu Le
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul 04310, Korea; (L.T.H.L.L.); (W.Y.); (S.J.)
| | - Wanki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul 04310, Korea; (L.T.H.L.L.); (W.Y.); (S.J.)
- Department of Precision Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea;
| | - Sangeun Jeon
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul 04310, Korea; (L.T.H.L.L.); (W.Y.); (S.J.)
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea;
| | - T. Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul 04310, Korea; (L.T.H.L.L.); (W.Y.); (S.J.)
- Correspondence: ; Tel.: +82-10-2739-6479
| |
Collapse
|
4
|
Li B, Fan B, Fan J, Chang S, Pan X, Wang Y, Wu Y, Song J, He X. Biochemical characterization of an organic solvent-tolerant glycosyltransferase from Bacillus licheniformis PI15 with potential application for raspberry ketone glycoside production. Biotechnol Appl Biochem 2019; 67:249-256. [PMID: 31628682 DOI: 10.1002/bab.1841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/13/2019] [Indexed: 11/06/2022]
Abstract
Raspberry ketone is a primary aroma component of the red raspberry. The glycosylation of this compound is a potential approach used to improve its pharmaceutical properties. In this work, raspberry ketone glycosides are produced in bacteria for the first time. Bacillus licheniformis PI15, an organic solvent-tolerant glycosyltransferase-producing strain, was isolated from chemically polluted soil. The cloning and heterologous expression of a glycosyltransferase, which was designated PI-GT1, in Escherichia coli BL21 resulted in the expression of an active and soluble protein that accounted for 15% of the total cell protein content. Purified PI-GT1 was highly active and stable over a broad pH range (6.0-10.0) and showed excellent pH stability. PI-GT1 maintained almost 60% of its maximal activity after 3 H of incubation at 20-40 °C and demonstrated optimal activity at 30 °C. Additionally, PI-GT1 displayed high stability and activity in the presence of hydrophilic solvents with log P ≤ -0.2 and retained more than 80% of its activity after 3 H of treatment. Supplementation with 10% DMSO markedly improved the glycosylation of raspberry ketone, resulting in a value 26 times higher than that in aqueous solution. The organic solvent-tolerant PI-GT1 may have potential uses in industrial chemical and pharmaceutical synthesis applications.
Collapse
Affiliation(s)
- Bingfeng Li
- School of Biology and Environment, Nanjing Polytechnic Institute, Nanjing, Jiangsu, China
| | - Bo Fan
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, China
| | - Jingping Fan
- School of Biology and Environment, Nanjing Polytechnic Institute, Nanjing, Jiangsu, China
| | - Siyuan Chang
- School of Biology and Environment, Nanjing Polytechnic Institute, Nanjing, Jiangsu, China
| | - Xin Pan
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yinan Wang
- School of Biology and Environment, Nanjing Polytechnic Institute, Nanjing, Jiangsu, China
| | - Yaming Wu
- School of Biology and Environment, Nanjing Polytechnic Institute, Nanjing, Jiangsu, China
| | - Junsong Song
- School of Biology and Environment, Nanjing Polytechnic Institute, Nanjing, Jiangsu, China
| | - Xuejun He
- School of Biology and Environment, Nanjing Polytechnic Institute, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Lu M, Dukunde A, Daniel R. Biochemical profiles of two thermostable and organic solvent-tolerant esterases derived from a compost metagenome. Appl Microbiol Biotechnol 2019; 103:3421-3437. [PMID: 30809711 DOI: 10.1007/s00253-019-09695-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
Owing to the functional versatility and potential applications in industry, interest in lipolytic enzymes tolerant to organic solvents is increasing. In this study, functional screening of a compost soil metagenome resulted in identification of two lipolytic genes, est1 and est2, encoding 270 and 389 amino acids, respectively. The two genes were heterologously expressed and characterized. Est1 and Est2 are thermostable enzymes with optimal enzyme activities at 80 and 70 °C, respectively. A second-order rotatable design, which allows establishing the relationship between multiple variables with the obtained responses, was used to explore the combined effects of temperature and pH on esterase stability. The response curve indicated that Est1, and particularly Est2, retained high stability within a broad range of temperature and pH values. Furthermore, the effects of organic solvents on Est1 and Est2 activities and stabilities were assessed. Notably, Est2 activity was significantly enhanced (two- to tenfold) in the presence of ethanol, methanol, isopropanol, and 1-propanol over a concentration range between 6 and 30% (v/v). For the short-term stability (2 h of incubation), Est2 exhibited high tolerance against 60% (v/v) of ethanol, methanol, isopropanol, DMSO, and acetone, while Est1 activity resisted these solvents only at lower concentrations (below 30%, v/v). Est2 also displayed high stability towards some water-immiscible organic solvents, such as ethyl acetate, diethyl ether, and toluene. With respect to long-term stability, Est2 retained most of its activity after 26 days of incubation in the presence of 30% (v/v) ethanol, methanol, isopropanol, DMSO, or acetone. All of these features indicate that Est1 and Est2 possess application potential.
Collapse
Affiliation(s)
- Mingji Lu
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Amélie Dukunde
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany.
| |
Collapse
|
6
|
Sukul P, Lupilov N, Leichert LI. Characterization of ML-005, a Novel Metaproteomics-Derived Esterase. Front Microbiol 2018; 9:1925. [PMID: 30210461 PMCID: PMC6119806 DOI: 10.3389/fmicb.2018.01925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 01/06/2023] Open
Abstract
A novel gene encoding for a lipolytic enzyme, designated ML-005, was recently identified using a functional metaproteomics approach. We heterologously expressed this protein in Escherichia coli and biochemically characterized it. ML-005 exhibited lipolytic activity toward short-chained substrates with the preferred substrate being p-nitrophenyl-butyrate, suggesting that ML-005 is an esterase. According to homology analysis and site-directed mutagenesis, the catalytic triad of the enzyme was identified as Ser-99, Asp-164, and His-191. Its optimal pH was determined to be at pH 8. Optimal activity was observed at 45°C. It also exhibited temperature, pH and salt tolerance. Residual relative activity after incubating at 50–60°C for 360 min was above 80% of its initial activity. It showed tolerance over a broad range of pH (5–12) and retained most of its initial activity. Furthermore, incubating ML-005 in 1 – 5M NaCl solution had negligible effect on its activity. DTT, EDTA, and ß-mercaptoethanol had no significant effect on ML-005’s activity. However, addition of PMSF led to almost complete inactivation consistent with ML-005 being a serine hydrolase. ML-005 remains stable in the presence of a range of metal ions, but addition of Cu2+ significantly reduces its relative activity. Organic solvents have an inhibitory effect on ML-005, but it retained 21% of activity in 10% methanol. SDS had the most pronounced inhibitory effect on ML-005 among all detergents tested and completely inactivated it. Furthermore, the Vmax of ML-005 was determined to be 59.8 μM/min along with a Km of 137.9 μM. The kcat of ML-005 is 26 s-1 and kcat/Km is 1.88 × 105 M-1 s-1.
Collapse
Affiliation(s)
- Premankur Sukul
- Department of Microbial Biochemistry, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Natalie Lupilov
- Department of Microbial Biochemistry, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Lars I Leichert
- Department of Microbial Biochemistry, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|