1
|
Zhang Y, Song Q, Meng Q, Zhao T, Wang X, Meng X, Cong J. Size-dependent ecotoxicological impacts of tire wear particles on zebrafish physiology and gut microbiota: Implications for aquatic ecosystem health. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137215. [PMID: 39842107 DOI: 10.1016/j.jhazmat.2025.137215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
The ecological impact of tire wear particles (TWP), a significant source of microplastics pollution, is increasingly concerning, especially given their potential effects on the health of aquatic ecosystems. This study investigates the size-dependent ecotoxicological responses of zebrafish (Danio rerio) to TWP exposure, focusing on physiological, metabolic, and microbial community impacts over a 15-day exposure period followed by a 15-day excretion period. Through integrated analysis of gut microbiome composition, liver transcriptomics, and host physiological markers, we found that smaller TWP particles (< 120 μm) induced oxidative stress, evidenced by increased SOD and MDA levels, and inhibited growth by reducing body mass and gut length. In contrast, larger TWP particles (250-380 μm) caused more substantial disruptions in lipid and xenobiotic metabolic pathways, as shown by significant downregulation of key metabolic genes (acads, cpt2_1, hadhaa), and alterations in the gut microbiome, including the enrichment of pathogenic genera, such as Enterococcus and Fusobacterium, while depleting beneficial microbes like Acinetobacter and Methyloversatilis. These microbiome shifts led to a more complex and potentially pathogenic gut microbiome. Notably, zebrafish displayed adaptive resilience during the excretion period, with significant recovery in body mass and microbial composition, emphasizing the adaptive capacity of aquatic organisms to pollutants. Our findings underscore the broader ecological risks posed by TWP, the pivotal role of gut microbiota in host resilience to pollutants, and the need for comprehensive management strategies addressing emerging contaminants in aquatic ecosystems.
Collapse
Affiliation(s)
- Yun Zhang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Qianqian Song
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Qingxuan Meng
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Tianyu Zhao
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Xiaolong Wang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Xinrui Meng
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Jing Cong
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| |
Collapse
|
2
|
Li C, Cao Z, Jiang H, Secundo F, Mao X. Characterization of a GH20 β- N-Acetylhexosaminidase from Flavobacterium algicola Suitable to Synthesize Lacto- N-triose II. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4849-4857. [PMID: 38386626 DOI: 10.1021/acs.jafc.3c07919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
β-N-Acetylhexosaminidases have attracted much attention in the enzymatic synthesis of lacto-N-triose II (LNT2) as a backbone precursor of human milk oligosaccharides (HMOs). In this study, a novel glycoside hydrolase (GH) 20 family β-N-acetylhexosaminidase, FlaNag2353, from Flavobacterium algicola was biochemically characterized and applied to synthesize LNT2. FlaNag2353 displayed optimal activity to p-nitrophenyl N-acetyl-β-d-glucosaminide (pNP-GlcNAc) at 40 °C and pH 8.0. In addition to its excellent hydrolysis activity toward pNP-GlcNAc and chitooligosaccharides, FlaNag2353 showed trans-glycosylation activity. Under conditions of pH 9.0 and 55 °C for 2 h and utilizing 200 mM lactose and 10 mM pNP-GlcNAc, FlaNag2353 synthesized LNT2 with a conversion ratio of 4.15% calculated from pNP-GlcNAc. Moreover, when applied to LNT2 synthesis with 10 mM pNP-GlcNAc and 9.7% (w/v) industrial waste whey powder, FlaNag2353 achieved a conversion ratio of 2.39%. This study has significant implications for broadening the applications of GH20 β-N-acetylhexosaminidases and promoting the high-value utilization of whey powder.
Collapse
Affiliation(s)
- Chengqiang Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Zhuoning Cao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", CNR, v. Mario Bianco 9, Milan 20131, Italy
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| |
Collapse
|
3
|
Liu Y, Yan Q, Ma J, Wang J, Jiang Z, Yang S. Directed evolution of a β-N-acetylhexosaminidase from Haloferula sp. for lacto-N-triose II and lacto-N-neotetraose synthesis from chitin. Enzyme Microb Technol 2023; 164:110177. [PMID: 36549095 DOI: 10.1016/j.enzmictec.2022.110177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
In our previous study, a β-N-acetylhexosaminidase (HaHex74) from Haloferula sp. showing high human milk oligosaccharides (HMOs) synthesis ability was identified and characterized. In this study, HaHex74 was further engineered by directed evolution and site-saturation mutagenesis to improve its transglycosylation activity for HMOs synthesis. A mutant (mHaHex74) with improved transglycosylation activity (HaHex74-Asn401Ile/His394Leu) was obtained and characterized. mHaHex74 exhibited maximal activity at pH 5.5 and 35 °C, respectively, which were distinct from that of HaHex74 (pH 6.5 and 45 °C). Moreover, mHaHex74 showed the highest LNT2 conversion ratio of 28.2% from N,N'-diacetyl chitobiose (GlcNAc2), which is 2.2 folds higher than that of HaHex74. A three-enzyme cascade reaction for the synthesis of LNT2 and LNnT from chitin was performed in a 5-L reactor, and the contents of LNT2 and LNnT reached up to 15.0 g L1 and 4.9 g L1, respectively. Therefore, mHaHex74 maybe a good candidate for enzymatic synthesis of HMOs.
Collapse
Affiliation(s)
- Yihao Liu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China
| | - Qiaojuan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China
| | - Junwen Ma
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China
| | - Jianyu Wang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China
| | - Zhengqiang Jiang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China.
| | - Shaoqing Yang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China.
| |
Collapse
|
4
|
Gong ZL, Deng Y, Jiang ZM, Liu LQ, Yu LY, Su J, Zhang YQ. Shinella lacus sp. nov., a novel microcystin-degrading alphaproteobacterium containing the bla carbapenemase gene. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A Gram-stain-negative, rod-shaped, microcystin-degrading bacterium, designated as CPCC 100929T, was isolated from a fresh water reservoir in Sichuan Province, PR China. This isolate grew well at 4–37 °C and pH 6.0–8.0, with optimal growth at 28–32 °C and pH 7.0, respectively. The major cellular fatty acids were C18:1 ω7c/C18:1 ω6c, C16:0, C18:1 ω7c 11-methyl and C19:0 cyclo ω8c. The predominant respiratory quinone was Q-10. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine and phosphatidylcholine were detected in the polar lipids extraction. The 16S rRNA gene sequence of strain CPCC 100929T was closely related to those of members of the genus
Shinella
, with the highest similarity of 98.6 % to
Shinella zoogloeoides
DSM 287T and 97.4–98.4 % with other identified
Shinella
members. In the phylogenetic trees based on 16S rRNA gene sequences and the core-genes analysis, strain CPCC 100929T was included within the clade of the genus
Shinella
. The values of average nucleotide identity (81.4–86.7 %) and digital DNA–DNA hybridization (25.4–44.6 %) between strain CPCC 100929T and other
Shinella
species were all below the thresholds for bacterial species delineation, respectively. The genomic DNA G+C content of strain CPCC 100929T was 63.6 %. The genomic sequence analysis indicated that this species contained genes encoding peroxidase, bla carbapenemase and the key enzyme for microcystin bio degradation, as well as rich carbohydrate-active enzyme coding genes, which might endow the micro-organism with properties to adapt to diverse environments. Based on its phenotypic and genetic properties, we propose that strain CPCC 100929T (=T1A350T=KCTC 72957T) is the type strain of a novel species with the name Shinella lacus sp. nov.
Collapse
Affiliation(s)
- Zhi-Lian Gong
- Department of Environment Engineering, School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Yang Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Zhu-Ming Jiang
- State Key Laboratory of Dao-di Herb, Beijing 100700, PR China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Lu-Qing Liu
- Department of Environment Engineering, School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Li-Yan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Jing Su
- State Key Laboratory of Dao-di Herb, Beijing 100700, PR China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
- State Key Laboratory of Dao-di Herb, Beijing 100700, PR China
| |
Collapse
|
5
|
Chen Y, Zhou N, Chen X, Wei G, Zhang A, Chen K, Ouyang P. Characterization of a New Multifunctional GH20 β- N-Acetylglucosaminidase From Chitinibacter sp. GC72 and Its Application in Converting Chitin Into N-Acetyl Glucosamine. Front Microbiol 2022; 13:874908. [PMID: 35620090 PMCID: PMC9129912 DOI: 10.3389/fmicb.2022.874908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, a gene encoding β-N-acetylglucosaminidase, designated NAGaseA, was cloned from Chitinibacter sp. GC72 and subsequently functional expressed in Escherichia coli BL21 (DE3). NAGaseA contains a glycoside hydrolase family 20 catalytic domain that shows low identity with the corresponding domain of the well-characterized NAGases. The recombinant NAGaseA had a molecular mass of 92 kDa. Biochemical characterization of the purified NAGaseA revealed that the optimal reaction condition was at 40°C and pH 6.5, and exhibited great pH stability in the range of pH 6.5-9.5. The V ma x , K m, k cat, and k cat /K m of NAGaseA toward p-nitrophenyl-N-acetyl glucosaminide (pNP-GlcNAc) were 3333.33 μmol min-1 l-1, 39.99 μmol l-1, 4667.07 s-1, and 116.71 ml μmol-1 s-1, respectively. Analysis of the hydrolysis products of N-acetyl chitin oligosaccharides (N-Acetyl COSs) indicated that NAGaseA was capable of converting N-acetyl COSs ((GlcNAc)2-(GlcNAc)6) into GlcNAc with hydrolysis ability order: (GlcNAc)2 > (GlcNAc)3 > (GlcNAc)4 > (GlcNAc)5 > (GlcNAc)6. Moreover, NAGaseA could generate (GlcNAc)3-(GlcNAc)6 from (GlcNAc)2-(GlcNAc)5, respectively. These results showed that NAGaseA is a multifunctional NAGase with transglycosylation activity. In addition, significantly synergistic action was observed between NAGaseA and other sources of chitinases during hydrolysis of colloid chitin. Finally, 0.759, 0.481, and 0.986 g/l of GlcNAc with a purity of 96% were obtained using three different chitinase combinations, which were 1.61-, 2.36-, and 2.69-fold that of the GlcNAc production using the single chitinase. This observation indicated that NAGaseA could be a potential candidate enzyme in commercial GlcNAc production.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ning Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xueman Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Guoguang Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
6
|
Qin X, Xin Y, Su X, Wang X, Zhang J, Tu T, Wang Y, Yao B, Huang H, Luo H. Heterologous expression and characterization of thermostable chitinase and β-N-acetylhexosaminidase from Caldicellulosiruptor acetigenus and their synergistic action on the bioconversion of chitin into N-acetyl-d-glucosamine. Int J Biol Macromol 2021; 192:250-257. [PMID: 34627844 DOI: 10.1016/j.ijbiomac.2021.09.204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
The bioconversion of chitin into N-acetyl-d-glucosamine (GlcNAc) using chitinolytic enzymes is one of the important avenues for chitin valorization. However, industrial applications of chitinolytic enzymes have been limited by their poor thermostability. Therefore, it is necessary to discover thermostable chitinolytic enzymes for GlcNAc production from chitin. In this study, two chitinolytic enzyme-encoding genes CaChiT and CaHex from Caldicellulosiruptor acetigenus were identified and heterologously expressed in Escherichia coli. The purified recombinant CaChiT and CaHex showed optimal activities at 70 °C and 90 °C respectively, and exhibited good thermostability over a range of temperature below 70 °C and broad pH stability at pH range of 3.0-8.0. CaChiT and CaHex were active on colloidal chitin, pNP-(GlcNAc)2, pNP-(GlcNAc)3, and pNP-GlcNAc, pNP-(GlcNAc)2, pNP-(GlcNAc)3, pNP-Glc respectively. Besides, the chitin oligosaccharides and colloidal chitin hydrolysis profiles revealed that CaChiT degraded chitin chains through exo-mode of action. Furthermore, CaChiT and CaHex exhibited a synergistic effect in the degradation of colloidal chitin, reaching 0.60 mg/mL of GlcNAc production after 1 h incubation. These results suggested that a combination of CaChiT and CaHex have great potential for industrial applications in the enzymatic production of GlcNAc from chitin-containing biowastes.
Collapse
Affiliation(s)
- Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - YanZhe Xin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
7
|
Cao L, Zhang R, Zhou J, Huang Z. Biotechnological Aspects of Salt-Tolerant Xylanases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8610-8624. [PMID: 34324332 DOI: 10.1021/acs.jafc.1c03192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
β-1,4-Xylan is the main component of hemicelluloses in land plant cell walls, whereas β-1,3-xylan is widely found in seaweed cell walls. Complete hydrolysis of xylan requires a series of synergistically acting xylanases. High-saline environments, such as saline-alkali lands and oceans, frequently occur in nature and are also involved in a broad range of various industrial processes. Thus, salt-tolerant xylanases may contribute to high-salt and marine food processing, aquatic feed production, industrial wastewater treatment, saline-alkali soil improvement, and global carbon cycle, with great commercial and environmental benefits. This review mainly introduces the definition, sources, classification, biochemical and molecular characteristics, adaptation mechanisms, and biotechnological applications of salt-tolerant xylanases. The scope of development for salt-tolerant xylanases is also discussed. It is anticipated that this review would serve as a reference for further development and utilization of salt-tolerant xylanases and other salt-tolerant enzymes.
Collapse
Affiliation(s)
- Lijuan Cao
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| |
Collapse
|
8
|
Li J, Gao K, Secundo F, Mao X. Biochemical characterization of two β-N-acetylglucosaminidases from Streptomyces violascens for efficient production of N-acetyl-d-glucosamine. Food Chem 2021; 364:130393. [PMID: 34167004 DOI: 10.1016/j.foodchem.2021.130393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022]
Abstract
Chitin, one of the most abundant renewable biopolymers on Earth, is commercially available from crustacean wastes. One critical step in converting chitin to high-value products is its degradation by chitinolytic enzymes to N-acetyl-d-glucosamine (GlcNAc), which plays a significant role in functional food and pharmaceutical industries. Here, we cloned and biochemically characterized two novel β-N-acetylglucosaminidases named SvNag2557 (family-84) and SvNag4755 (family-3) from Streptomyces violascens ATCC 27968. Both SvNag2557 and SvNag4755 exhibited strict substrate specificity toward N-acetyl chitooligosaccharides with GlcNAc as the sole product. Thus, a one-pot production for pure GlcNAc from chitin by an enzyme cocktail reaction was further developed. Under the co-action of an endo-type chitinase SaChiA4 and SvNag2557 (mass ratio 1:2), the final conversion rates of colloidal chitin and ionic liquid pretreated chitin to GlcNAc were 80.2% and 73.8% with GlcNAc purities of 99.7% and 96.8%, respectively.
Collapse
Affiliation(s)
- Jing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Kunpeng Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", CNR, v. Mario Bianco 9, Milan 20131, Italy
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| |
Collapse
|
9
|
Liu Y, Ma J, Shi R, Li T, Yan Q, Jiang Z, Yang S. Biochemical characterization of a β-N-acetylhexosaminidase from Catenibacterium mitsuokai suitable for the synthesis of lacto-N-triose II. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Liu YH, Wang L, Huang P, Jiang ZQ, Yan QJ, Yang SQ. Efficient sequential synthesis of lacto-N-triose II and lacto-N-neotetraose by a novel β-N-acetylhexosaminidase from Tyzzerella nexilis. Food Chem 2020; 332:127438. [DOI: 10.1016/j.foodchem.2020.127438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023]
|
11
|
Zhang A, Mo X, Zhou N, Wang Y, Wei G, Hao Z, Chen K. Identification of Chitinolytic Enzymes in Chitinolyticbacter meiyuanensis and Mechanism of Efficiently Hydrolyzing Chitin to N-Acetyl Glucosamine. Front Microbiol 2020; 11:572053. [PMID: 33193169 PMCID: PMC7641034 DOI: 10.3389/fmicb.2020.572053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/28/2020] [Indexed: 01/20/2023] Open
Abstract
Chitinolyticbacter meiyuanensis SYBC-H1, a bacterium capable of hydrolyzing chitin and shrimp shell to N-acetyl glucosamine (GlcNAc) as the only product, was isolated previously. Here, the hydrolysis mechanism of this novel strain toward chitin was investigated. Sequencing and analysis of the complete genome of SYBC-H1 showed that it encodes 32 putatively chitinolytic enzymes including 30 chitinases affiliated with the glycoside hydrolase (GH) families 18 (26) and 19 (4), one GH family 20 β-N-acetylglucosaminidase (NAGase), and one Auxiliary Activities (AA) family 10 lytic polysaccharide monooxygenase (LPMO). However, only eight GH18 chitinases, one AA10 LPMO, and one GH20 NAGase were detected in the culture broth of the strain, according to peptide mass fingerprinting (PMF). Of these, genes encoding chitinolytic enzymes including five GH18 chitinases (Cm711, Cm3636, Cm3638, Cm3639, and Cm3769) and one GH20 NAGase (Cm3245) were successfully expressed in active form in Escherichia coli. The hydrolysis of chitinous substrates showed that Cm711, Cm3636, Cm3638, and Cm3769 were endo-chitinases and Cm3639 was exo-chitinase. Moreover, Cm3639 and Cm3769 can convert the GlcNAc dimer and colloidal chitin (CC) into GlcNAc, which showed that they also possess NAGase activity. In addition, NAGase Cm3245 possesses a very high exo-acting activity of hydrolyzing GlcNAc dimer. These results suggest that chitinases and NAGase from SYBC-H1 both play important roles in conversion of N-acetyl chitooligosaccharides to GlcNAc, resulting in the accumulation of the final product GlcNAc. To our knowledge, this is the first report of the complete genome sequence and chitinolytic enzyme genes discovery of this strain.
Collapse
Affiliation(s)
- Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiaofang Mo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ning Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yingying Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Guoguang Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Zhikui Hao
- Taizhou Vocational and Technical College, Taizhou, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
12
|
Zhang A, Mo X, Zhou N, Wang Y, Wei G, Chen J, Chen K, Ouyang P. A novel bacterial β- N-acetyl glucosaminidase from Chitinolyticbacter meiyuanensis possessing transglycosylation and reverse hydrolysis activities. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:115. [PMID: 32612678 PMCID: PMC7324980 DOI: 10.1186/s13068-020-01754-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/20/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND N-Acetyl glucosamine (GlcNAc) and N-Acetyl chitooligosaccharides (N-Acetyl COSs) exhibit many biological activities, and have been widely used in the pharmaceutical, agriculture, food, and chemical industries. Particularly, higher N-Acetyl COSs with degree of polymerization from 4 to 7 ((GlcNAc)4-(GlcNAc)7) show good antitumor and antimicrobial activity, as well as possessing strong stimulating activity toward natural killer cells. Thus, it is of great significance to discover a β-N-acetyl glucosaminidase (NAGase) that can not only produce GlcNAc, but also synthesize N-Acetyl COSs. RESULTS The gene encoding the novel β-N-acetyl glucosaminidase, designated CmNAGase, was cloned from Chitinolyticbacter meiyuanensis SYBC-H1. The deduced amino acid sequence of CmNAGase contains a glycoside hydrolase family 20 catalytic module that shows low identity (12-35%) with the corresponding domain of most well-characterized NAGases. The CmNAGase gene was highly expressed with an active form in Escherichia coli BL21 (DE3) cells. The specific activity of purified CmNAGase toward p-nitrophenyl-N-acetyl glucosaminide (pNP-GlcNAc) was 4878.6 U/mg of protein. CmNAGase had a molecular mass of 92 kDa, and its optimum activity was at pH 5.4 and 40 °C. The V max, K m, K cat, and K cat/K m of CmNAGase for pNP-GlcNAc were 16,666.67 μmol min-1 mg-1, 0.50 μmol mL-1, 25,555.56 s-1, and 51,111.12 mL μmol-1 s-1, respectively. Analysis of the hydrolysis products of N-Acetyl COSs and colloidal chitin revealed that CmNAGase is a typical exo-acting NAGase. Particularly, CmNAGase can synthesize higher N-Acetyl COSs ((GlcNAc)3-(GlcNAc)7) from (GlcNAc)2-(GlcNAc)6, respectively, showed that it possesses transglycosylation activity. In addition, CmNAGase also has reverse hydrolysis activity toward GlcNAc, synthesizing various linked GlcNAc dimers. CONCLUSIONS The observations recorded in this study that CmNAGase is a novel NAGase with exo-acting, transglycosylation, and reverse hydrolysis activities, suggest a possible application in the production of GlcNAc or higher N-Acetyl COSs.
Collapse
Affiliation(s)
- Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Xiaofang Mo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Ning Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Yingying Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Guoguang Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Jie Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| |
Collapse
|
13
|
Liu Y, Jiang Z, Ma J, Ma S, Yan Q, Yang S. Biochemical Characterization and Structural Analysis of a β- N-Acetylglucosaminidase from Paenibacillus barengoltzii for Efficient Production of N-Acetyl-d-glucosamine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5648-5657. [PMID: 32338008 DOI: 10.1021/acs.jafc.9b08085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioproduction of N-acetyl-d-glucosamine (GlcNAc) from chitin, the second most abundant natural renewable polymer on earth, is of great value in which chitinolytic enzymes play key roles. In this study, a novel glycoside hydrolase family-18 β-N-acetylglucosaminidase (PbNag39) from Paenibacillus barengoltzii suitable for GlcNAc production was identified and biochemically characterized. It possessed a unique shallow catalytic groove (5.8 Å) as well as a smaller C-terminal domain (solvent-accessible surface area, 5.1 × 103 Å2) and exhibited strict substrate specificity toward N-acetyl chitooligosaccharides (COS) with GlcNAc as the sole product, showing a typical manner of action of β-N-acetylglucosaminidases. Thus, an environmentally friendly bioprocess for GlcNAc production from ball-milled powdery chitin by an enzyme cocktail reaction was further developed. By using the new route, the powdery chitin conversion rate increased from 23.3% (v/v) to 75.3% with a final GlcNAc content of 22.6 mg mL-1. The efficient and environmentally friendly bioprocess may have great application potential in GlcNAc production.
Collapse
Affiliation(s)
- Yihao Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Junwen Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shuai Ma
- College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Qiaojuan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
14
|
Lv C, Gu T, Xu K, Gu J, Li L, Liu X, Zhang A, Gao S, Li W, Zhao G. Biochemical characterization of a β-N-acetylhexosaminidase from Streptomyces alfalfae and its application in the production of N-acetyl-d-glucosamine. J Biosci Bioeng 2019; 128:135-141. [DOI: 10.1016/j.jbiosc.2019.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
|
15
|
A Bacillus pumilus originated β-N-acetylglucosaminidase for chitin combinatory hydrolysis and exploration of its thermostable mechanism. Int J Biol Macromol 2019; 132:1282-1289. [DOI: 10.1016/j.ijbiomac.2019.04.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 11/23/2022]
|
16
|
Zhang R, Xu S, Li X, Han X, Song Z, Zhou J, Huang Z. Examining the molecular characteristics of glycoside hydrolase family 20 β-N-acetylglucosaminidases with high activity. Bioengineered 2019; 10:71-77. [PMID: 30982422 PMCID: PMC6527067 DOI: 10.1080/21655979.2019.1602427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
β-N-Acetylglucosaminidases (GlcNAcases) possess many important biological functions and are used for promising applications that are often hampered by low-activity enzymes. We previously demonstrated that most GlcNAcases of the glycoside hydrolase (GH) family 20 showed higher activities than those of other GH families, and we presented two novel GH 20 GlcNAcases that showed higher activities than most GlcNAcases. A highly flexible structure, which was attributed to the presence of to a high proportion of random coils and flexible amino acid residues, was presumed to be a factor in the high activity of GH 20 GlcNAcases. In this study, we further hypothesized that two special positions might play a key role in catalytic activity. The increase in GH 20 GlcNAcase activity might correspond to the increased structural flexibility and substrate affinity of the two positions due to an increase in random coils and amino acid residues, notably acidic Asp and Glu.
Collapse
Affiliation(s)
- Rui Zhang
- a Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , P. R. China.,b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China.,c Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan , Kunming , P. R. China.,d Key Laboratory of Enzyme Engineering , Yunnan Normal University , Kunming , P. R. China
| | - Shujing Xu
- b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China
| | - Xinyue Li
- b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China
| | - Xiaowei Han
- b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China
| | - Zhifeng Song
- b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China
| | - Junpei Zhou
- a Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , P. R. China.,b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China.,c Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan , Kunming , P. R. China.,d Key Laboratory of Enzyme Engineering , Yunnan Normal University , Kunming , P. R. China
| | - Zunxi Huang
- a Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , P. R. China.,b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China.,c Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan , Kunming , P. R. China.,d Key Laboratory of Enzyme Engineering , Yunnan Normal University , Kunming , P. R. China
| |
Collapse
|
17
|
Jiang S, Jiang H, Zhou Y, Jiang S, Zhang G. High-level expression of β-N-Acetylglucosaminidase BsNagZ in Pichia pastoris to obtain GlcNAc. Bioprocess Biosyst Eng 2019; 42:611-619. [DOI: 10.1007/s00449-018-02067-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/21/2018] [Indexed: 01/11/2023]
|
18
|
Meekrathok P, Stubbs KA, Suginta W. Potent inhibition of a GH20 exo-β-N-acetylglucosaminidase from marine Vibrio bacteria by reaction intermediate analogues. Int J Biol Macromol 2018; 115:1165-1173. [DOI: 10.1016/j.ijbiomac.2018.04.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/14/2018] [Accepted: 04/30/2018] [Indexed: 02/04/2023]
|
19
|
Enzymatic properties of β-N-acetylglucosaminidases. Appl Microbiol Biotechnol 2017; 102:93-103. [PMID: 29143882 DOI: 10.1007/s00253-017-8624-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/27/2023]
Abstract
β-N-Acetylglucosaminidases (GlcNAcases) hydrolyse N-acetylglucosamine-containing oligosaccharides and proteins. These enzymes produce N-acetylglucosamine (GlcNAc) and have a wide range of promising applications in the food, energy, and pharmaceutical industries, such as synergistic degradation of chitin with endo-chitinases and using GlcNAc to produce sialic acid, bioethanol, single-cell proteins, and pharmaceutical therapeutics. GlcNAcases also play an important role in the dynamic balance of cellular O-linked GlcNAc levels, catabolism of ganglioside storage in Tay-Sachs disease, and bacterial cell wall recycling and flagellar assembly. In view of these important biological functions and the wide range of industrial applications of GlcNAcases, this review aims to provide a better understanding of various advances for these enzymes. It focuses on enzymatic properties of GlcNAcases, including substrate specificity, catalytic activity, pH optimum, temperature optimum, thermostability, the effects of various metal ions and organic reagents, and transglycosylation.
Collapse
|