1
|
Gilmore BF, White TA, Busetti A, McAteer MI, Maggs CA, Thompson TP. Exiguolysin, a Novel Thermolysin (M4) Peptidase from Exiguobacterium oxidotolerans. Microorganisms 2024; 12:2311. [PMID: 39597700 PMCID: PMC11596557 DOI: 10.3390/microorganisms12112311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
This study details a comprehensive biochemical and structural characterization of exiguolysin, a novel thermolysin-like, caseinolytic peptidase secreted by a marine isolate of Exiguobacterium oxidotolerans strain BW26. Exiguolysin demonstrated optimal proteolytic activity at 37 °C and pH 3, retaining 85% activity at 50 °C, highlighting its potential stability under broad reaction conditions. SDS-PAGE and LC-MS analysis identified the enzyme as a 32 kDa M4-family metalloprotease. Exiguolysin activity was inhibited by 1,10-phenanthroline, confirming its dependence on metal ions for activity. Zymographic analysis and substrate specificity assays revealed selective hydrolysis of matrix metalloproteinase (MMP) substrates but no activity against elastase substrates. Analysis of the predicted gene sequence and structural predictions using AlphaFold identified the presence and position of HEXXH and Glu-Xaa-Xaa-Xaa-Asp motifs, crucial for zinc binding and catalytic activity, characteristic of 'Glu-zincins' and members of the M4 peptidase family. High-throughput screening of a 20 × 20 N-alpha mercaptoamide dipeptide inhibitor library against exiguolysin identified SH-CH2-CO-Met-Tyr-NH2 as the most potent inhibitor, with a Ki of 1.95 μM. Notably, exiguolysin selectively inhibited thrombin-induced PAR-1 activation in PC-3 cells, potentially indicating a potential mechanism of virulence in modulating PAR-1 signalling during infection by disarming PARs. This is the first detailed characterization of a peptidase of the M4 (thermolysin) family in the genus Exiguobacterium which may have industrial application potential and relevance as a putative virulence factor.
Collapse
Affiliation(s)
- Brendan F. Gilmore
- Biofilm Research Group, School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- School of Medicine, University of Limerick, Limerick V94 T9PX, Ireland
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Tracy A. White
- Biofilm Research Group, School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alessandro Busetti
- Biofilm Research Group, School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Matthew I. McAteer
- Biofilm Research Group, School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Christine A. Maggs
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Thomas P. Thompson
- Biofilm Research Group, School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
2
|
Niu D, Zhao N, Wang J, Mchunu NP, Permaul K, Singh S, Wang Z. Boosting Fructosyl Transferase's Thermostability and Catalytic Performance for Highly Efficient Fructooligosaccharides (FOS) Production. Foods 2024; 13:2997. [PMID: 39335925 PMCID: PMC11431173 DOI: 10.3390/foods13182997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Achieving enzymatic food processing at high substrate concentrations can significantly enhance production efficiency; however, related studies are notably insufficient. This study focused on the enzymatic synthesis of fructooligosaccharides (FOS) at high temperature and high substrate concentration. Results revealed that increased viscosity and limited substrate solubility in high-concentration systems could be alleviated by raising the reaction temperature, provided it aligned with the enzyme's thermostability. Further analysis of enzyme thermostability in real sucrose solutions demonstrates that the enzyme's thermostability was remarkedly improved at higher sucrose concentrations, evidenced by a 10.3 °C increase in melting temperature (Tm) in an 800 g/L sucrose solution. Building upon these findings, we developed a novel method for enzymatic FOS synthesis at elevated temperatures and high sucrose concentrations. Compared to existing commercial methods, the initial transglycosylation rate and volumetric productivity for FOS synthesis increased by 155.9% and 113.5%, respectively, at 65 °C in an 800 g/L sucrose solution. This study underscores the pivotal role of substrate concentration, incubation temperature, and the enzyme's actual status in advancing enzyme-catalyzed processes and demonstrates the potential of enzymatic applications in enhancing food processing technologies, providing innovative strategies for the food industry.
Collapse
Affiliation(s)
- Dandan Niu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Material Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nan Zhao
- Department of Biological Chemical Engineering, College of Chemical Engineering and Material Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jun Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nokuthula Peace Mchunu
- National Research Foundation, P.O. Box 2600, Pretoria 0001, South Africa
- School of Life Science, University of KwaZulu Natal, Durban 4000, South Africa
| | - Kugen Permaul
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Suren Singh
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Zhengxiang Wang
- Department of Biological Chemical Engineering, College of Chemical Engineering and Material Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
3
|
Jamal GA, Jahangirian E, Hamblin MR, Mirzaei H, Tarrahimofrad H, Alikowsarzadeh N. Proteases, a powerful biochemical tool in the service of medicine, clinical and pharmaceutical. Prep Biochem Biotechnol 2024:1-25. [PMID: 38909284 DOI: 10.1080/10826068.2024.2364234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Proteases, enzymes that hydrolyze peptide bonds, have various applications in medicine, clinical applications, and pharmaceutical development. They are used in cancer treatment, wound debridement, contact lens cleaning, prion degradation, biofilm removal, and fibrinolytic agents. Proteases are also crucial in cardiovascular disease treatment, emphasizing the need for safe, affordable, and effective fibrinolytic drugs. Proteolytic enzymes and protease biosensors are increasingly used in diagnostic and therapeutic applications. Advanced technologies, such as nanomaterials-based sensors, are being developed to enhance the sensitivity, specificity, and versatility of protease biosensors. These biosensors are becoming effective tools for disease detection due to their precision and rapidity. They can detect extracellular and intracellular proteases, as well as fluorescence-based methods for real-time and label-free detection of virus-related proteases. The active utilization of proteolytic enzymatic biosensors is expected to expand significantly in biomedical research, in-vitro model systems, and drug development. We focused on journal articles and books published in English between 1982 and 2024 for this study.
Collapse
Affiliation(s)
- Ghadir A Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ehsan Jahangirian
- Department of Molecular, Zist Tashkhis Farda Company (tBioDx), Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Health Science, Laser Research Center, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Neda Alikowsarzadeh
- Molecular and Life Science Department, Han University of Applied Science, Arnhem, Nederland
| |
Collapse
|
4
|
Allison SD, AdeelaYasid N, Shariff FM, Abdul Rahman N. Molecular Cloning, Characterization, and Application of Organic Solvent-Stable and Detergent-Compatible Thermostable Alkaline Protease from Geobacillus thermoglucosidasius SKF4. J Microbiol Biotechnol 2024; 34:436-456. [PMID: 38044750 PMCID: PMC10940756 DOI: 10.4014/jmb.2306.06050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
Several thermostable proteases have been identified, yet only a handful have undergone the processes of cloning, comprehensive characterization, and full exploitation in various industrial applications. Our primary aim in this study was to clone a thermostable alkaline protease from a thermophilic bacterium and assess its potential for use in various industries. The research involved the amplification of the SpSKF4 protease gene, a thermostable alkaline serine protease obtained from the Geobacillus thermoglucosidasius SKF4 bacterium through polymerase chain reaction (PCR). The purified recombinant SpSKF4 protease was characterized, followed by evaluation of its possible industrial applications. The analysis of the gene sequence revealed an open reading frame (ORF) consisting of 1,206 bp, coding for a protein containing 401 amino acids. The cloned gene was expressed in Escherichia coli. The molecular weight of the enzyme was measured at 28 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The partially purified enzyme has its highest activity at a pH of 10 and a temperature of 80°C. In addition, the enzyme showed a half-life of 15 h at 80°C, and there was a 60% increase in its activity at 10 mM Ca2+ concentration. The activity of the protease was completely inhibited (100%) by phenylmethylsulfonyl fluoride (PMSF); however, the addition of sodium dodecyl sulfate (SDS) resulted in a 20% increase in activity. The enzyme was also stable in various organic solvents and in certain commercial detergents. Furthermore, the enzyme exhibited strong potential for industrial use, particularly as a detergent additive and for facilitating the recovery of silver from X-ray film.
Collapse
Affiliation(s)
- Suleiman D Allison
- Department of Food Science and Technology, Faculty of Agriculture and Agricultural Technology, Moddibo Adama University, Yola 640230, Nigeria
| | - Nur AdeelaYasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra, Malaysia, 43400 Serdang Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang Selangor, Malaysia
| | - Nor'Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra, Malaysia, 43400 Serdang Selangor, Malaysia
| |
Collapse
|
5
|
Barzkar N, Sukhikh S, Babich O. Study of marine microorganism metabolites: new resources for bioactive natural products. Front Microbiol 2024; 14:1285902. [PMID: 38260902 PMCID: PMC10800913 DOI: 10.3389/fmicb.2023.1285902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
The marine environment has remained a source of novel biological molecules with diversified applications. The ecological and biological diversity, along with a unique physical environment, have provided the evolutionary advantage to the plant, animals and microbial species thriving in the marine ecosystem. In light of the fact that marine microorganisms frequently interact symbiotically or mutualistically with higher species including corals, fish, sponges, and algae, this paper intends to examine the potential of marine microorganisms as a niche for marine bacteria. This review aims to analyze and summarize modern literature data on the biotechnological potential of marine fungi and bacteria as producers of a wide range of practically valuable products (surfactants, glyco-and lipopeptides, exopolysaccharides, enzymes, and metabolites with different biological activities: antimicrobial, antitumor, and cytotoxic). Hence, the study on bioactive secondary metabolites from marine microorganisms is the need of the hour. The scientific novelty of the study lies in the fact that for the first time, the data on new resources for obtaining biologically active natural products - metabolites of marine bacteria and fungi - were generalized. The review investigates the various kinds of natural products derived from marine microorganisms, specifically focusing on marine bacteria and fungi as a valuable source for new natural products. It provides a summary of the data regarding the antibacterial, antimalarial, anticarcinogenic, antibiofilm, and anti-inflammatory effects demonstrated by marine microorganisms. There is currently a great need for scientific and applied research on bioactive secondary metabolites of marine microorganisms from the standpoint of human and animal health.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Agro-Industrial Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Stanislav Sukhikh
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Babich
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
6
|
Mousavi Ghahfarrokhi SS, Mahdigholi FS, Amin M. Collateral beauty in the damages: an overview of cosmetics and therapeutic applications of microbial proteases. Arch Microbiol 2023; 205:375. [PMID: 37935975 DOI: 10.1007/s00203-023-03713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Microbial proteases are enzymes secreted by a variety of microorganisms, including bacteria and fungi, and have attracted significant attention due to their versatile applications in the food and pharmaceutical industries. In addition, certain proteases have been used in the development of skin health products and cosmetics. This article provides a review of microbial proteases in terms of their classification, sources, properties, and applications. Moreover, different pharmacological and molecular investigations have been reviewed. Various biological activities of microbial proteases, such as Arazyme, collagenase, elastin, and Nattokinase, which are involved in the digestion of dietary proteins, as well as their potential anti-inflammatory, anti-cancer, antithrombotic, and immunomodulatory effects have been included. Furthermore, their ability to control infections and treat various disorders has been discussed. Finally, this review highlights the potential applications and future perspectives of microbial proteases in biotechnology and biomedicine, and proposes further studies to develop new perspectives for disease control and health-promoting strategies using microbial resources.
Collapse
Affiliation(s)
- Seyed Sadeq Mousavi Ghahfarrokhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fateme Sadat Mahdigholi
- Department of Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Room No. 1-221, Faculty of Pharmacy, 16th Azar Street, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Miao H, Xiang X, Han N, Wu Q, Huang Z. Improving the Thermostability of Serine Protease PB92 from Bacillus alcalophilus via Site-Directed Mutagenesis Based on Semi-Rational Design. Foods 2023; 12:3081. [PMID: 37628080 PMCID: PMC10453622 DOI: 10.3390/foods12163081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Proteases have been widely employed in many industrial processes. In this work, we aimed to improve the thermostability of the serine protease PB92 from Bacillus alcalophilus to meet the high-temperature requirements of biotechnological treatments. Eight mutation sites (N18, S97-S101, E110, and R143) were identified, and 21 mutants were constructed from B-factor comparison and multiple sequence alignment and expressed via Bacillus subtilis. Among them, fifteen mutants exhibited increased half-life (t1/2) values at 65 °C (1.13-31.61 times greater than that of the wild type). Based on the composite score of enzyme activity and thermostability, six complex mutants were implemented. The t1/2 values of these six complex mutants were 2.12-10.05 times greater than that of the wild type at 65 °C. In addition, structural analysis revealed that the increased thermal stability of complex mutants may be related to the formation of additional hydrophobic interactions due to increased hydrophobicity and the decreased flexibility of the structure. In brief, the thermal stability of the complex mutants N18L/R143L/S97A, N18L/R143L/S99L, and N18L/R143L/G100A was increased 4-fold, which reveals application potential in industry.
Collapse
Affiliation(s)
- Huabiao Miao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Xia Xiang
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Nanyu Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
8
|
Røyseth V, Hurysz BM, Kaczorowska AK, Dorawa S, Fedøy AE, Arsın H, Serafim MSM, Myers SA, Werbowy O, Kaczorowski T, Stokke R, O’Donoghue AJ, Steen IH. Activation mechanism and activity of globupain, a thermostable C11 protease from the Arctic Mid-Ocean Ridge hydrothermal system. Front Microbiol 2023; 14:1199085. [PMID: 37405169 PMCID: PMC10315481 DOI: 10.3389/fmicb.2023.1199085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/26/2023] [Indexed: 07/06/2023] Open
Abstract
Deep-sea hydrothermal vents offer unique habitats for heat tolerant enzymes with potential new enzymatic properties. Here, we present the novel C11 protease globupain, which was prospected from a metagenome-assembled genome of uncultivated Archaeoglobales sampled from the Soria Moria hydrothermal vent system located on the Arctic Mid-Ocean Ridge. Sequence comparisons against the MEROPS-MPRO database showed that globupain has the highest sequence identity to C11-like proteases present in human gut and intestinal bacteria. Successful recombinant expression in Escherichia coli of the wild-type zymogen and 13 mutant substitution variants allowed assessment of residues involved in maturation and activity of the enzyme. For activation, globupain required the addition of DTT and Ca2+. When activated, the 52kDa proenzyme was processed at K137 and K144 into a 12kDa light- and 32kDa heavy chain heterodimer. A structurally conserved H132/C185 catalytic dyad was responsible for the proteolytic activity, and the enzyme demonstrated the ability to activate in-trans. Globupain exhibited caseinolytic activity and showed a strong preference for arginine in the P1 position, with Boc-QAR-aminomethylcoumarin (AMC) as the best substrate out of a total of 17 fluorogenic AMC substrates tested. Globupain was thermostable (Tm activated enzyme = 94.51°C ± 0.09°C) with optimal activity at 75°C and pH 7.1. Characterization of globupain has expanded our knowledge of the catalytic properties and activation mechanisms of temperature tolerant marine C11 proteases. The unique combination of features such as elevated thermostability, activity at relatively low pH values, and ability to operate under high reducing conditions makes globupain a potential intriguing candidate for use in diverse industrial and biotechnology sectors.
Collapse
Affiliation(s)
- Victoria Røyseth
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Brianna M. Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms | KPD, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Sebastian Dorawa
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Anita-Elin Fedøy
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Hasan Arsın
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Mateus Sá M. Serafim
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samuel A. Myers
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Olesia Werbowy
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Runar Stokke
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
| | - Ida Helene Steen
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Røyseth V, Hurysz BM, Kaczorowska A, Dorawa S, Fedøy AE, Arsin H, Serafim M, Werbowy O, Kaczorowski T, Stokke R, O'Donoghue AJ, Steen IH. Activation mechanism and activity of globupain, a thermostable C11 protease from the Arctic Mid-Ocean Ridge hydrothermal system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535519. [PMID: 37066400 PMCID: PMC10104074 DOI: 10.1101/2023.04.04.535519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Deep-sea hydrothermal vent systems with prevailing extreme thermal conditions for life offer unique habitats to source heat tolearant enzymes with potential new enzymatic properties. Here, we present the novel C11 protease globupain , prospected from a metagenome-assembled genome of uncultivated Archaeoglobales sampled from the Soria Moria hydrothermal vent system located on the Arctic Mid- Ocean Ridges. By sequence comparisons against the MEROPS-MPRO database, globupain showed highest sequence identity to C11-like proteases present in human gut and intestinal bacteria,. Successful recombinant expression in Escherichia coli of the active zymogen and 13 mutant substitution variants allowed assesment of residues involved in maturation and activity of the enzyme. For activation, globupain required the addition of DTT and Ca²⁺. When activated, the 52 kDa proenzyme was processed at Lys 137 and Lys 144 into a 12 kDa light- and 32 kDa heavy chain heterodimer. A structurally conserved His 132 /Cys 185 catalytic dyad was responsible for the proteolytic activity, and the enzyme demonstrated the ability to activate in-trans . Globupain exhibited caseinolytic activity and showed a strong preference for arginine in the P1 position, with Boc-QAR- aminomethylcoumarin (AMC) as the best substrate out of a total of 17 fluorogenic AMC substrates tested. Globupain was thermostable (T m activated enzyme = 94.51 ± 0.09°C) with optimal activity at 75 °C and pH 7.1. By characterizing globupain, our knowledge of the catalytic properties and activation mechanisms of temperature tolerant marine C11 proteases have been expanded. The unique combination of features such as elevated thermostability, activity at relatively low pH values, and ability to operate under high reducing conditions makes globupain a potential intriguing candidate for use in diverse industrial and biotechnology sectors.
Collapse
|
10
|
Miao H, Zhe Y, Xiang X, Cao Y, Han N, Wu Q, Huang Z. Enhanced Extracellular Expression of a Ca 2+- and Mg 2+-Dependent Hyperthermostable Protease EA1 in Bacillus subtilis via Systematic Screening of Optimal Signal Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15830-15839. [PMID: 36480738 DOI: 10.1021/acs.jafc.2c06741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Proteases have been widely applied in various industries, including tanning, silk, feed, medicine, food, and environmental protection. Herein, the protease EA1 (GenBank accession no. U25630.1) was successfully expressed in Bacillus subtilis and demonstrated to function as a Ca2+- and Mg2+-dependent hyperthermostable neutral protease. At 80 °C, its half-life (t1/2) in the presence of 10 mM Mg2+ and Ca2+ was 50.4-fold longer than that in their absence (7.4 min), which can be explained by structural analysis. Compared with the currently available commercial proteases, protease EA1 has obvious advantages in heat resistance. The largest peptide library was used to enhance the extracellular expression of protease EA1 via constructing and screening 244 signal peptides (SPs). Eleven SPs with high yields of protease EA1 were identified from 5000 clones using a high-throughput assay. Specifically, the enzyme activity of protease produced by the strain (217.6 U/mL) containing the SP XynD was 5.2-fold higher than that of the strain with the initial SP. In brief, the protease is a potential candidate for future use in the high-temperature industry.
Collapse
Affiliation(s)
- Huabiao Miao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Yuanyuan Zhe
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Xia Xiang
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Yan Cao
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Nanyu Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
11
|
Barzkar N, Babich O, Das R, Sukhikh S, Tamadoni Jahromi S, Sohail M. Marine Bacterial Dextranases: Fundamentals and Applications. Molecules 2022; 27:molecules27175533. [PMID: 36080300 PMCID: PMC9458216 DOI: 10.3390/molecules27175533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dextran, a renewable hydrophilic polysaccharide, is nontoxic, highly stable but intrinsically biodegradable. The α-1, 6 glycosidic bonds in dextran are attacked by dextranase (E.C. 3.2.1.11) which is an inducible enzyme. Dextranase finds many applications such as, in sugar industry, in the production of human plasma substitutes, and for the treatment and prevention of dental plaque. Currently, dextranases are obtained from terrestrial fungi which have longer duration for production but not very tolerant to environmental conditions and have safety concerns. Marine bacteria have been proposed as an alternative source of these enzymes and can provide prospects to overcome these issues. Indeed, marine bacterial dextranases are reportedly more effective and suitable for dental caries prevention and treatment. Here, we focused on properties of dextran, properties of dextran—hydrolyzing enzymes, particularly from marine sources and the biochemical features of these enzymes. Lastly the potential use of these marine bacterial dextranase to remove dental plaque has been discussed. The review covers dextranase-producing bacteria isolated from shrimp, fish, algae, sea slit, and sea water, as well as from macro- and micro fungi and other microorganisms. It is common knowledge that dextranase is used in the sugar industry; produced as a result of hydrolysis by dextranase and have prebiotic properties which influence the consistency and texture of food products. In medicine, dextranases are used to make blood substitutes. In addition, dextranase is used to produce low molecular weight dextran and cytotoxic dextran. Furthermore, dextranase is used to enhance antibiotic activity in endocarditis. It has been established that dextranase from marine bacteria is the most preferable for removing plaque, as it has a high enzymatic activity. This study lays the groundwork for the future design and development of different oral care products, based on enzymes derived from marine bacteria.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 74576, Iran
- Correspondence: or
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Rakesh Das
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas 14578, Iran
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
12
|
de Oliveira TS, de Oliveira BFR, de Andrade FCC, Guimarães CR, de Godoy MG, Laport MS. Homoscleromorpha-derived Bacillus spp. as potential sources of biotechnologically-relevant hydrolases and biosurfactants. World J Microbiol Biotechnol 2022; 38:169. [PMID: 35882683 DOI: 10.1007/s11274-022-03358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
Despite hydrolytic exoenzymes and biosurfactants having been gradually reported from the poriferan microbiome, little is known about these bioproducts in microorganisms inhabiting Homoscleromorpha sponges. Here, we investigated the production of hydrolases and biosurfactants in bacteria isolated from three shallow-water homoscleromorph species, Oscarella sp., Plakina cyanorosea, and Plakina cabofriense. A total of 99 of 107 sponge-associated bacterial isolates exhibited activity for at least one of the analyzed hydrolases. Following fermentation in Luria-Bertani (LB) and Tryptic Soy Broth (TSB), two isolates, 80BH11 and 80B1:1010b, showed higher lipase and peptidase activities. Both of them belonged to the Bacillus genus and were isolated from Oscarella. Central composite design leveraged up the peptidase activity in 280% by Bacillus sp. 80BH11 in the TSB medium for 48 h at 30 °C. The optimized model also revealed that pH 6.5 and 45 °C were the best conditions for peptidase reaction. In addition, Bacillus sp. 80BH11 was able to release highly emulsifying and remarkably stable surfactants in the LB medium. Surfactin was finally elucidated as the biosurfactant generated by this sponge-derived Bacillus. In conclusion, we hope to have set the scenery for further prospecting of industrial enzymes and biosurfactants in Homoscleromorpha microbiomes.
Collapse
Affiliation(s)
- Thiago Silva de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, 21941-902, Brazil
| | - Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, 21941-902, Brazil.,Instituto Biomédico, Universidade Federal Fluminense, Rua Professor Hernani Melo, 101, São Domingos, Niterói, RJ, 24210-130, Brazil
| | - Flavia Costa Carvalho de Andrade
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, 21941-902, Brazil
| | - Carolina Reis Guimarães
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, 21941-902, Brazil.,Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Cidade Universitária, Rio de Janeiro, 21941-909, Brazil
| | - Mateus Gomes de Godoy
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, 21941-902, Brazil
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
13
|
Barzkar N, Sheng R, Sohail M, Jahromi ST, Babich O, Sukhikh S, Nahavandi R. Alginate Lyases from Marine Bacteria: An Enzyme Ocean for Sustainable Future. Molecules 2022; 27:3375. [PMID: 35684316 PMCID: PMC9181867 DOI: 10.3390/molecules27113375] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
The cell wall of brown algae contains alginate as a major constituent. This anionic polymer is a composite of β-d-mannuronate (M) and α-l-guluronate (G). Alginate can be degraded into oligosaccharides; both the polymer and its products exhibit antioxidative, antimicrobial, and immunomodulatory activities and, hence, find many commercial applications. Alginate is attacked by various enzymes, collectively termed alginate lyases, that degrade glycosidic bonds through β-elimination. Considering the abundance of brown algae in marine ecosystems, alginate is an important source of nutrients for marine organisms, and therefore, alginate lyases play a significant role in marine carbon recycling. Various marine microorganisms, particularly those that thrive in association with brown algae, have been reported as producers of alginate lyases. Conceivably, the marine-derived alginate lyases demonstrate salt tolerance, and many are activated in the presence of salts and, therefore, find applications in the food industry. Therefore, this review summarizes the structural and biochemical features of marine bacterial alginate lyases along with their applications. This comprehensive information can aid in the expansion of future prospects of alginate lyases.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 3995, Iran
| | - Ruilong Sheng
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal;
- Department of Radiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas 9145, Iran;
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (S.S.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (S.S.)
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj 8361, Iran;
| |
Collapse
|
14
|
Barzkar N, Jahromi ST, Vianello F. Marine Microbial Fibrinolytic Enzymes: An Overview of Source, Production, Biochemical Properties and Thrombolytic Activity. Mar Drugs 2022; 20:46. [PMID: 35049901 PMCID: PMC8779250 DOI: 10.3390/md20010046] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) have emerged as a major threat to global health resulting in a decrease in life expectancy with respect to humans. Thrombosis is one of the foremost causes of CVDs, and it is characterized by the unwanted formation of fibrin clots. Recently, microbial fibrinolytic enzymes due to their specific features have gained much more attention than conventional thrombolytic agents for the treatment of thrombosis. Marine microorganisms including bacteria and microalgae have the significant ability to produce fibrinolytic enzymes with improved pharmacological properties and lesser side effects and, hence, are considered as prospective candidates for large scale production of these enzymes. There are no studies that have evaluated the fibrinolytic potential of marine fungal-derived enzymes. The current review presents an outline regarding isolation sources, production, features, and thrombolytic potential of fibrinolytic biocatalysts from marine microorganisms identified so far.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 74576, Iran
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas 93165, Iran
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy;
| |
Collapse
|
15
|
PIRES BOLZAN R, CRUZ E, BATISTA BARBOSA J, VILELA TALMA S, LEAL MARTINS ML. Optimization of spray-drying conditions for obtaining Bacillus sp. SMIA-2 protease powder. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.18121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Raphael PIRES BOLZAN
- Instituto Federal do Espírito Santo, Brasil; Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brasil
| | - Erica CRUZ
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brasil
| | | | | | | |
Collapse
|
16
|
Exploring the Diversity and Biotechnological Potential of Cultured and Uncultured Coral-Associated Bacteria. Microorganisms 2021; 9:microorganisms9112235. [PMID: 34835361 PMCID: PMC8622030 DOI: 10.3390/microorganisms9112235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 11/17/2022] Open
Abstract
Coral-associated microbes are crucial for the biology of their hosts, contributing to nutrient cycling, adaptation, mitigation of toxic compounds, and biological control of pathogens. Natural products from coral-associated micro-organisms (CAM) may possess unique traits. Despite this, the use of CAM for biotechnological purposes has not yet been adequately explored. Here, we investigated the production of commercially important enzymes by 37 strains of bacteria isolated from the coral species Mussismilia braziliensis, Millepora alcicornis, and Porites astreoides. In-vitro enzymatic assays showed that up to 56% of the isolates produced at least one of the seven enzymes screened (lipase, caseinase, keratinase, cellulase, chitinase, amylase, and gelatinase); one strain, identified as Bacillus amyloliquefaciens produced all these enzymes. Additionally, coral species-specific cultured and uncultured microbial communities were identified. The phylum Firmicutes predominated among the isolates, including the genera Exiguobacterium, Bacillus, and Halomonas, among others. Next-generation sequencing and bacteria culturing produced similar but also complementary data, with certain genera detected only by one or the other method. Our results demonstrate the importance of exploring different coral species as sources of specific micro-organisms of biotechnological and industrial interest, at the same time reinforcing the economic and ecological importance of coral reefs as reservoirs of such diversity.
Collapse
|
17
|
Barzkar N, Sohail M, Tamadoni Jahromi S, Nahavandi R, Khodadadi M. Marine microbial L-glutaminase: from pharmaceutical to food industry. Appl Microbiol Biotechnol 2021; 105:4453-4466. [PMID: 34043082 DOI: 10.1007/s00253-021-11356-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 11/27/2022]
Abstract
Deamination of L-glutamine to glutamic acid with the concomitant release of ammonia by the activity of L-glutaminase (L-glutamine amidohydrolase EC 3.5.1.2) is a unique reaction that also finds potential applications in different sectors ranging from therapeutics to food industry. Owing to its cost-effectiveness, rapidity, and compatibility with downstream processes, microbial production of L-glutaminase is preferred over the production by other sources. Marine microorganisms including bacteria, yeasts, and moulds have manifested remarkable capacity to produce L-glutaminase and, therefore, are considered as prospective candidates for large-scale production of this enzyme. The main focus of this article is to provide an overview of L-glutaminase producing marine microorganisms, to discuss strategies used for the lab- and large-scale production of these enzyme and to review the application of L-glutaminase from marine sources so that the future prospects can be understood. KEY POINTS: • L-glutaminase has potential applications in different sectors ranging from therapeutics to food industry • Marine microorganisms are considered as prospective candidates for large-scale production of L-glutaminase • Marine microbial L-glutaminase have great potential in therapeutics and in the food industry.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, 3995, Bandar Abbas, Iran.
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mojgan Khodadadi
- Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|
18
|
Bankole PO, Semple KT, Jeon BH, Govindwar SP. Impact of redox-mediators in the degradation of olsalazine by marine-derived fungus, Aspergillus aculeatus strain bpo2: Response surface methodology, laccase stability and kinetics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111742. [PMID: 33396068 DOI: 10.1016/j.ecoenv.2020.111742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
The indiscriminate disposal of olsalazine in the environment poses a threat to human health and natural ecosystems because of its cytotoxic and genotoxic nature. In the present study, degradation efficiency of olsalazine by the marine-derived fungus, Aspergillus aculeatus (MT492456) was investigated. Optimization of physicochemical parameters (pH. Temperature, Dry weight) and redox mediators {(2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), p-Coumaric acid and 1-hydroxybenzotriazole (HOBT)} was achieved with Response Surface Methodology (RSM)-Box-Behnken Design (BBD) resulting in 89.43% removal of olsalazine on 7th day. The second-order polynomial regression model was found to be statistically significant, adequate and fit with p < 0.0001, F value=41.87 and correlation coefficient (R2=0.9826). Biotransformation was enhanced in the redox mediator-laccase systems resulting in 99.5% degradation of olsalazine. The efficiency of ABTS in the removal of olsalazine was more pronounced than HOBT and p-Coumaric acid in the laccase-mediator system. This is attributed to the potent nature of the electron transfer mechanism deployed during oxidation of olsalazine. The pseudo-second-order kinetics revealed that the average half-life (t1/2) and removal rates (k1) increases with increasing concentrations of olsalazine. Michaelis-Menten kinetics affirmed the interaction between laccase and olsalazine under optimized conditions with maximum removal rate, Vmax=111.11 hr-1 and half-saturation constant, Km=1537 mg L-1. At the highest drug concentration (2 mM); 98%, 95% and 93% laccase was remarkably stabilized in the enzyme-drug degradation system by HOBT, ABTS and p-Coumaric acid respectively. This study further revealed that the deactivation of laccase by the redox mediators is adequately compensated with enhanced removal of olsalazine.
Collapse
Affiliation(s)
- Paul Olusegun Bankole
- Department of Pure and Applied Botany, College of Biosciences, Federal University of Agriculture, P.M.B. 2240 Abeokuta, Ogun State, Nigeria.
| | - Kirk Taylor Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sanjay Prabhu Govindwar
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
19
|
Barzkar N, Sohail M, Tamadoni Jahromi S, Gozari M, Poormozaffar S, Nahavandi R, Hafezieh M. Marine Bacterial Esterases: Emerging Biocatalysts for Industrial Applications. Appl Biochem Biotechnol 2021; 193:1187-1214. [PMID: 33411134 DOI: 10.1007/s12010-020-03483-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022]
Abstract
The marine ecosystem has been known to be a significant source of novel enzymes. Esterase enzymes (EC 3.1.1.1) represent a diverse group of hydrolases that catalyze the cleavage and formation of ester bonds. Although esterases are widely distributed among marine organisms, only microbial esterases are of paramount industrial importance. This article discusses the importance of marine microbial esterases, their biochemical and kinetic properties, and their stability under extreme conditions. Since culture-dependent techniques provide limited insights into microbial diversity of the marine ecosystem, therefore, genomics and metagenomics approaches have widely been adopted in search of novel esterases. Additionally, the article also explains industrial applications of marine bacterial esterases particularly for the synthesis of optically pure substances, the preparation of enantiomerically pure drugs, the degradation of human-made plastics and organophosphorus compounds, degradation of the lipophilic components of the ink, and production of short-chain flavor esters.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, 7931674576, Iran.
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | - Mohsen Gozari
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | - Sajjad Poormozaffar
- Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecology Research Center, Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Sciences Research Institute, Bandar-e-Lengeh, Iran
| | - Reza Nahavandi
- Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mahmoud Hafezieh
- Iranian Fisheries Science Research Institute (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
20
|
Barzkar N, Khan Z, Tamadoni Jahromi S, Pourmozaffar S, Gozari M, Nahavandi R. A critical review on marine serine protease and its inhibitors: A new wave of drugs? Int J Biol Macromol 2020; 170:674-687. [PMID: 33387547 DOI: 10.1016/j.ijbiomac.2020.12.134] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023]
Abstract
Marine organisms are rich sources of enzymes and their inhibitors having enormous therapeutic potential. Among different proteolytic enzymes, serine proteases, which can be obtained from various marine organisms show a potential to biomedical application as thrombolytic agents. Although this type of proteases plays a crucial role in almost all biological processes, their uncontrolled activity often leads to several diseases. Accordingly, the actions of these types of proteases are regulated by serine protease inhibitors (SPIs). Marine SPIs control complement activation and various other physiological functions, such as inflammation, immune function, fibrinolysis, blood clotting, and cancer metastasis. This review highlights the potential use of serine proteases and their inhibitors as the new wave of promising drugs.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Zahoor Khan
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar 'Abbas, Iran
| | - Sajjad Pourmozaffar
- Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecological Research Center, Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Sciences Research Institute, Bandar-e-Lengeh, Iran
| | - Mohsen Gozari
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar 'Abbas, Iran
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
21
|
Ding Y, Yang Y, Ren Y, Xia J, Liu F, Li Y, Tang XF, Tang B. Extracellular Production, Characterization, and Engineering of a Polyextremotolerant Subtilisin-Like Protease From Feather-Degrading Thermoactinomyces vulgaris Strain CDF. Front Microbiol 2020; 11:605771. [PMID: 33408708 PMCID: PMC7779483 DOI: 10.3389/fmicb.2020.605771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/26/2020] [Indexed: 01/18/2023] Open
Abstract
Here, the gene encoding a subtilisin-like protease (protease Als) was cloned from Thermoactinomyces vulgaris strain CDF and expressed in Escherichia coli. The recombinant enzyme was released into the culture medium of E. coli as a mature form (mAls). Purified mAls displayed optimal activity at 60–70°C and pH 10.0 using azo-casein as the substrate, and showed a half-life of 13.8 h at 70°C. Moreover, the activity of thermostable mAls was comparable to or higher than those of mesophilic subtilisin Carlsberg and proteinase K at low temperatures (10–30°C). Protease Als was also stable in several organic solvents and showed high compatibility with commercial laundry detergents. Notably, mAls exhibited approximately 100% of its activity at 3 M NaCl, and showed enhanced thermostability with the increase of NaCl concentration up to 3 M. Protease Als possesses an excess of solvent-accessible acidic amino acid residues, which may account for the high halotolerance of the enzyme. Compared with homologous protease C2 from the same strain, protease Als exhibits substantially lower activity toward insoluble keratin substrates but efficiently hydrolyzes soluble keratin released from chicken feathers. Additionally, direct substitution of the substrate-binding site of protease Als with that of protease C2 improves its activity against insoluble keratin substrates. By virtue of its polyextremotolerant attribute and kerationolytic capacity, protease Als may find broad applications in various industries such as laundry detergents, food processing, non-aqueous biocatalysis, and feather processing.
Collapse
Affiliation(s)
- Yidi Ding
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yong Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuxia Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jingying Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Feng Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Feng Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China
| |
Collapse
|
22
|
Mead HL, Hamm PS, Shaffer IN, Teixeira MDM, Wendel CS, Wiederhold NP, Thompson GR, Muñiz-Salazar R, Castañón-Olivares LR, Keim P, Plude C, Terriquez J, Galgiani JN, Orbach MJ, Barker BM. Differential Thermotolerance Adaptation between Species of Coccidioides. J Fungi (Basel) 2020; 6:E366. [PMID: 33327629 PMCID: PMC7765126 DOI: 10.3390/jof6040366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/24/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022] Open
Abstract
Coccidioidomycosis, or Valley fever, is caused by two species of dimorphic fungi. Based on molecular phylogenetic evidence, the genus Coccidioides contains two reciprocally monophyletic species: C. immitis and C. posadasii. However, phenotypic variation between species has not been deeply investigated. We therefore explored differences in growth rate under various conditions. A collection of 39 C. posadasii and 46 C. immitis isolates, representing the full geographical range of the two species, was screened for mycelial growth rate at 37 °C and 28 °C on solid media. The radial growth rate was measured for 16 days on yeast extract agar. A linear mixed effect model was used to compare the growth rate of C. posadasii and C. immitis at 37 °C and 28 °C, respectively. C. posadasii grew significantly faster at 37 °C, when compared to C. immitis; whereas both species had similar growth rates at 28 °C. These results indicate thermotolerance differs between these two species. As the ecological niche has not been well-described for Coccidioides spp., and disease variability between species has not been shown, the evolutionary pressure underlying the adaptation is unclear. However, this research reveals the first significant phenotypic difference between the two species that directly applies to ecological research.
Collapse
Affiliation(s)
- Heather L. Mead
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (H.L.M.); (P.K.)
| | - Paris S. Hamm
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Isaac N. Shaffer
- School of Informatics, Computers, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA;
| | | | | | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 77030, USA;
| | - George R. Thompson
- Departments of Internal Medicine Division of Infectious Diseases, and Medical Microbiology and Immunology, University of California-Davis, Sacramento, CA 95616, USA;
| | - Raquel Muñiz-Salazar
- Laboratorio de Epidemiología y Ecología Molecular, Escuela Ciencias de la Salud, Universidad Autónoma de Baja California, Unidad Valle Dorado, Ensenada 22890, Mexico;
| | - Laura Rosio Castañón-Olivares
- Department of Microbiology and Parasitology, Universidad Nacional Autónoma de Mexico, Ciudad de México 04510, Mexico;
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (H.L.M.); (P.K.)
| | - Carmel Plude
- Northern Arizona Healthcare, Flagstaff, AZ 86001, USA; (C.P.); (J.T.)
| | - Joel Terriquez
- Northern Arizona Healthcare, Flagstaff, AZ 86001, USA; (C.P.); (J.T.)
| | - John N. Galgiani
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ 85721, USA; (J.N.G.); (M.J.O.)
| | - Marc J. Orbach
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ 85721, USA; (J.N.G.); (M.J.O.)
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Bridget M. Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (H.L.M.); (P.K.)
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ 85721, USA; (J.N.G.); (M.J.O.)
| |
Collapse
|
23
|
Damare S, Mishra A, D'Souza-Ticlo-Diniz D, Krishnaswamy A, Raghukumar C. A deep-sea hydrogen peroxide-stable alkaline serine protease from Aspergillus flavus. 3 Biotech 2020; 10:528. [PMID: 33214975 DOI: 10.1007/s13205-020-02520-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/28/2020] [Indexed: 11/26/2022] Open
Abstract
We report here the production of an alkaline serine protease by Aspergillus flavus isolated at 5600-m depth from deep-sea sediments of the Central Indian Basin. When grown on defatted groundnut oil meal at 30 °C for 48-72 h, this fungal isolate produced 2000-2500 ACU mL-1 of alkaline protease. The purified protease had activity optima at pH 10.0 and 45 °C. It was a thiol-independent serine protease, identified as an alkaline serine protease ALP1 with a molecular mass of 42.57 kDa. The thermostability and activity of the enzyme increased at 60 °C, in the presence of additives such as sucrose, Tween 20, sorbitol, Ca2+ and glycerol and was not adversely affected by H2O2 indicating its potential as a detergent additive.
Collapse
Affiliation(s)
- Samir Damare
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004 India
| | - Abhishek Mishra
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, 403 206 India
| | - Donna D'Souza-Ticlo-Diniz
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004 India
- Present Address: Department of Microbiology, SVKM's Mithibai College of Arts, Chauhan Institute of Science and Amrutben Jivanlal College of Commerce and Economics, Vile Parle West, Mumbai, India
| | - Akhila Krishnaswamy
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004 India
| | - Chandralata Raghukumar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004 India
| |
Collapse
|
24
|
Marine microbial alkaline protease: An efficient and essential tool for various industrial applications. Int J Biol Macromol 2020; 161:1216-1229. [DOI: 10.1016/j.ijbiomac.2020.06.072] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 11/27/2022]
|
25
|
Sun J, Li P, Liu Z, Huang W, Mao X. A novel thermostable serine protease from a metagenomic library derived from marine sediments in the East China Sea. Appl Microbiol Biotechnol 2020; 104:9229-9238. [PMID: 32965562 DOI: 10.1007/s00253-020-10879-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/07/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023]
Abstract
Thermal activity and stability are important characteristics for proteases applied in the detergent, pharmaceutical, food, and other green industries. With the intent to discover thermostable novel proteases, we constructed a fosmid metagenomic library from marine sediments in the East China Sea and isolated a clone endowed with high proteolytic activity from this library. Sequence analysis of the positive subclones allowed the identification of a coding region of 1254 bp related to protease activity. The unrooted phylogenetic tree and alignment results revealed that the sequence might be derived from Anaerolineaceae bacterium and encodes a new member of the peptidase S8A subfamily with the typical catalytic triad Asp119/His150/Ser325. The fusion protein, named pF1AL2, was expressed in Escherichia coli and showed a molecular weight of 35 kDa. pF1AL2 was active in the pH range of 5.0-11.0 with an optimal pH at 10.0 and had high stability under alkaline conditions, retaining more than 95% of its activity after 24 h at pH 11.0. The optimal temperature of pF1AL2 was 80 °C, and it retained nearly 80% of its activity after 6 h at 70 °C, showing great thermal activity and stability. In addition, the enzyme had great salt tolerance (the residual activity when kept in 3 M NaCl was 40%). Its thermal activity and stability, along with its halotolerance and pH-tolerance, indicate the high potential value of pF1AL2 in industrial applications. The exploitation of pF1AL2 could lay the foundation for the development and utilization of proteases with special features from marine resources by a metagenomic strategy. KEY POINTS: • A novel protease, pF1AL2, from marine sediments, was screened out by a metagenomic strategy. • The protease pF1AL2 analyzed in silico, cloned, and characterized. • pF1AL2 had an optimal temperature of 80 °C and retained nearly 80% of activity after 6 h at 70 °C. • pF1AL2 had great tolerance for high-temperature and acid, alkaline, and high salt environments.
Collapse
Affiliation(s)
- Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Ping Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Wencan Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
26
|
de Oliveira BFR, Carr CM, Dobson ADW, Laport MS. Harnessing the sponge microbiome for industrial biocatalysts. Appl Microbiol Biotechnol 2020; 104:8131-8154. [PMID: 32827049 DOI: 10.1007/s00253-020-10817-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
Within the marine sphere, host-associated microbiomes are receiving growing attention as prolific sources of novel biocatalysts. Given the known biocatalytic potential of poriferan microbial inhabitants, this review focuses on enzymes from the sponge microbiome, with special attention on their relevant properties and the wide range of their potential biotechnological applications within various industries. Cultivable bacterial and filamentous fungal isolates account for the majority of the enzymatic sources. Hydrolases, mainly glycoside hydrolases and carboxylesterases, are the predominant reported group of enzymes, with varying degrees of tolerance to alkaline pH and growing salt concentrations being common. Prospective areas for the application of these microbial enzymes include biorefinery, detergent, food and effluent treatment industries. Finally, alternative strategies to identify novel biocatalysts from the sponge microbiome are addressed, with an emphasis on modern -omics-based approaches that are currently available in the enzyme research arena. By providing this current overview of the field, we hope to not only increase the appetite of researchers to instigate forthcoming studies but also to stress how basic and applied research can pave the way for new biocatalysts from these symbiotic microbial communities in a productive fashion. KEY POINTS: • The sponge microbiome is a burgeoning source of industrial biocatalysts. • Sponge microbial enzymes have useful habitat-related traits for several industries. • Strategies are provided for the future discovery of microbial enzymes from sponges.
Collapse
Affiliation(s)
- Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,School of Microbiology, University College Cork, Cork, Ireland.
| | - Clodagh M Carr
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
27
|
An overview on marine cellulolytic enzymes and their potential applications. Appl Microbiol Biotechnol 2020; 104:6873-6892. [DOI: 10.1007/s00253-020-10692-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/10/2020] [Accepted: 05/17/2020] [Indexed: 11/26/2022]
|
28
|
Sarkar G, K S. Extraction and characterization of alkaline protease from Streptomyces sp. GS-1 and its application as dehairing agent. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101590] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Isolation and Molecular Characterization of Rummelii Bacillus Stabekisii: An Efficient Protease Producing Bacterial Strain Identified from Environmental Waste Samples of Warangal District in Telangana. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Jin M, Gai Y, Guo X, Hou Y, Zeng R. Properties and Applications of Extremozymes from Deep-Sea Extremophilic Microorganisms: A Mini Review. Mar Drugs 2019; 17:md17120656. [PMID: 31766541 PMCID: PMC6950199 DOI: 10.3390/md17120656] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023] Open
Abstract
The deep sea, which is defined as sea water below a depth of 1000 m, is one of the largest biomes on the Earth, and is recognised as an extreme environment due to its range of challenging physical parameters, such as pressure, salinity, temperature, chemicals and metals (such as hydrogen sulphide, copper and arsenic). For surviving in such extreme conditions, deep-sea extremophilic microorganisms employ a variety of adaptive strategies, such as the production of extremozymes, which exhibit outstanding thermal or cold adaptability, salt tolerance and/or pressure tolerance. Owing to their great stability, deep-sea extremozymes have numerous potential applications in a wide range of industries, such as the agricultural, food, chemical, pharmaceutical and biotechnological sectors. This enormous economic potential combined with recent advances in sampling and molecular and omics technologies has led to the emergence of research regarding deep-sea extremozymes and their primary applications in recent decades. In the present review, we introduced recent advances in research regarding deep-sea extremophiles and the enzymes they produce and discussed their potential industrial applications, with special emphasis on thermophilic, psychrophilic, halophilic and piezophilic enzymes.
Collapse
Affiliation(s)
- Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yingbao Gai
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Xun Guo
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Yanping Hou
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Runying Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Correspondence: ; Tel.: +86-592-2195323
| |
Collapse
|
31
|
Birolli WG, Lima RN, Porto ALM. Applications of Marine-Derived Microorganisms and Their Enzymes in Biocatalysis and Biotransformation, the Underexplored Potentials. Front Microbiol 2019; 10:1453. [PMID: 31481935 PMCID: PMC6710449 DOI: 10.3389/fmicb.2019.01453] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Biodiversity has been explored in the search for novel enzymes, including forests, savannas, tundras, deserts, and finally the sea. Marine microorganisms and their enzymes are capable of being active in high-salt concentration, large range of temperature, and high incidence of light and pressure, constituting an important source of unique biocatalysts. This review presents studies employing whole-cell processes of marine bacteria and fungi, aiming for new catalysts for different reactions in organic synthesis, such as reduction, oxidation, hydroxylation, hydrolysis, elimination, and conjugation. Genomics and protein engineering studies were also approached, and reactions employing isolated enzymes from different classes (oxidoreductases, hydrolases, lyases, and ligases) were described and summarized. Future biotechnological studies and process development should focus on molecular biology for the obtention of enzymes with interesting, fascinating and enhanced properties, starting from the exploration of microorganisms from the marine environment. This review approaches the literature about the use of marine-derived bacteria, fungi, and their enzymes for biocatalytic reactions of organic compounds, promoting a discussion about the possibilities of these microorganisms in the synthesis of different substances.
Collapse
Affiliation(s)
- Willian G Birolli
- Laboratory of Organic Chemistry and Biocatalysis, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil.,Center of Exact Sciences and Technology, Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Rafaely N Lima
- Laboratory of Organic Chemistry and Biocatalysis, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil.,Center of Exact Sciences and Technology, Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - André L M Porto
- Laboratory of Organic Chemistry and Biocatalysis, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
32
|
Siar EH, Morellon-Sterling R, Zidoune MN, Fernandez-Lafuente R. Amination of ficin extract to improve its immobilization on glyoxyl-agarose: Improved stability and activity versus casein. Int J Biol Macromol 2019; 133:412-419. [DOI: 10.1016/j.ijbiomac.2019.04.123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/24/2023]
|
33
|
Han H, Ling Z, Khan A, Virk AK, Kulshrestha S, Li X. Improvements of thermophilic enzymes: From genetic modifications to applications. BIORESOURCE TECHNOLOGY 2019; 279:350-361. [PMID: 30755321 DOI: 10.1016/j.biortech.2019.01.087] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Thermozymes (from thermophiles or hyperthermophiles) offer obvious advantages due to their excellent thermostability, broad pH adaptation, and hydrolysis ability, resulting in diverse industrial applications including food, paper, and textile processing, biofuel production. However, natural thermozymes with low yield and poor adaptability severely hinder their large-scale applications. Extensive studies demonstrated that using genetic modifications such as directed evolution, semi-rational design, and rational design, expression regulations and chemical modifications effectively improved enzyme's yield, thermostability and catalytic efficiency. However, mechanism-based techniques for thermozymes improvements and applications need more attention. In this review, stabilizing mechanisms of thermozymes are summarized for thermozymes improvements, and these improved thermozymes eventually have large-scale industrial applications.
Collapse
Affiliation(s)
- Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Amanpreet Kaur Virk
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
34
|
Characterization, Phylogenetic Analysis and Potential Applications of Heterotrophic Bacteria Inhabit Sand Dunes of Thar Desert, India. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Hussain F, Arana-Peña S, Morellon-Sterling R, Barbosa O, Braham SA, Kamal S, Fernandez-Lafuente R. Further Stabilization of Alcalase Immobilized on Glyoxyl Supports: Amination Plus Modification with Glutaraldehyde. Molecules 2018; 23:E3188. [PMID: 30513981 PMCID: PMC6320783 DOI: 10.3390/molecules23123188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Alcalase was immobilized on glyoxyl 4% CL agarose beads. This permitted to have Alcalase preparations with 50% activity retention versus Boc-l-alanine 4-nitrophenyl ester. However, the recovered activity versus casein was under 20% at 50 °C, as it may be expected from the most likely area of the protein involved in the immobilization. The situation was different at 60 °C, where the activities of immobilized and free enzyme became similar. The chemical amination of the immobilized enzyme or the treatment of the enzyme with glutaraldehyde did not produce any significant stabilization (a factor of 2) with high costs in terms of activity. However, the modification with glutaraldehyde of the previously aminated enzyme permitted to give a jump in Alcalase stability (e.g., with most than 80% of enzyme activity retention for the modified enzyme and less than 30% for the just immobilized enzyme in stress inactivation at pH 7 or 9). This preparation could be used in the hydrolysis of casein at pH 9 even at 67 °C, retaining around 50% of the activity after 5 hydrolytic cycles when the just immobilized preparation was almost inactive after 3 cycles. The modified enzyme can be reused in hydrolysis of casein at 45 °C and pH 9 for 6 cycles (6 h) without any decrease in enzyme activity.
Collapse
Affiliation(s)
- Fouzia Hussain
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain.
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan.
| | - Sara Arana-Peña
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain.
| | | | - Oveimar Barbosa
- Departamento de Química, Facultad de Ciencias. Universidad del Tolima, Ibagué 546, Colombia.
| | - Sabrina Ait Braham
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain.
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan.
| | | |
Collapse
|
36
|
Multidisciplinary involvement and potential of thermophiles. Folia Microbiol (Praha) 2018; 64:389-406. [PMID: 30386965 DOI: 10.1007/s12223-018-0662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
The full biotechnological exploitation of thermostable enzymes in industrial processes is necessary for their commercial interest and industrious value. The heat-tolerant and heat-resistant enzymes are a key for efficient and cost-effective translation of substrates into useful products for commercial applications. The thermophilic, hyperthermophilic, and microorganisms adapted to extreme temperatures (i.e., low-temperature lovers or psychrophiles) are a rich source of thermostable enzymes with broad-ranging thermal properties, which have structural and functional stability to underpin a variety of technologies. These enzymes are under scrutiny for their great biotechnological potential. Temperature is one of the most critical parameters that shape microorganisms and their biomolecules for stability under harsh environmental conditions. This review describes in detail the sources of thermophiles and thermostable enzymes from prokaryotes and eukaryotes (microbial cell factories). Furthermore, the review critically examines perspectives to improve modern biocatalysts, its production and performance aiming to increase their value for biotechnology through higher standards, specificity, resistance, lowing costs, etc. These thermostable and thermally adapted extremophilic enzymes have been used in a wide range of industries that span all six enzyme classes. Thus, in particular, target of this review paper is to show the possibility of both high-value-low-volume (e.g., fine-chemical synthesis) and low-value-high-volume by-products (e.g., fuels) by minimizing changes to current industrial processes.
Collapse
|
37
|
Future direction in marine bacterial agarases for industrial applications. Appl Microbiol Biotechnol 2018; 102:6847-6863. [DOI: 10.1007/s00253-018-9156-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
|