1
|
Park SI, Cho CH, Ciniglia C, Huang TY, Liu SL, Bustamante DE, Calderon MS, Mansilla A, McDermott T, Andersen RA, Yoon HS. Revised classification of the Cyanidiophyceae based on plastid genome data with descriptions of the Cavernulicolales ord. nov. and Galdieriales ord. nov. (Rhodophyta). JOURNAL OF PHYCOLOGY 2023; 59:444-466. [PMID: 36792488 DOI: 10.1111/jpy.13322] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/06/2023] [Accepted: 01/21/2023] [Indexed: 06/15/2023]
Abstract
The Cyanidiophyceae, an extremophilic red algal class, is distributed worldwide in extreme environments. Species grow either in acidic hot environments or in dim light conditions (e.g., "cave Cyanidium"). The taxonomy and classification systems are currently based on morphological, eco-physiological, and molecular phylogenetic characters; however, previous phylogenetic results showed hidden diversity of the Cyanidiophyceae and suggested a revision of the classification system. To clarify phylogenetic relationships within this red algal class, we employ a phylogenomic approach based on 15 plastomes (10 new) and 15 mitogenomes (seven new). Our phylogenies show consistent relationships among four lineages (Galdieria, "cave Cyanidium", Cyanidium, and Cyanidioschyzon lineages). Each lineage is distinguished by organellar genome characteristics. The "cave Cyanidium" lineage is a distinct clade that diverged after the Galdieria clade but within a larger monophyletic clade that included the Cyanidium and Cyanidioschyzon lineages. Because the "cave Cyanidium" lineage is a mesophilic lineage that differs substantially from the other three thermoacidophilic lineages, we describe it as a new order (Cavernulicolales). Based on this evidence, we reclassified the Cyanidiophyceae into four orders: Cyanidiales, Cyanidioschyzonales, Cavernulicolales ord. nov., and Galdieriales ord. nov. The genetic distance among these four orders is comparable to, or greater than, the distances found between other red algal orders and subclasses. Three new genera (Cavernulicola, Gronococcus, Sciadococcus), five new species (Galdieria javensis, Galdieria phlegrea, Galdieria yellowstonensis, Gronococcus sybilensis, Sciadococcus taiwanensis), and a new nomenclatural combination (Cavernulicola chilensis) are proposed.
Collapse
Affiliation(s)
- Seung In Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Tzu-Yen Huang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Shao-Lun Liu
- Department of Life Science & Center for Ecology and Environment, Tunghai University, Taichung, Taiwan
| | - Danilo E Bustamante
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Amazonas, Peru
- Cape Horn International Center (CHIC), Chile
| | - Martha S Calderon
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Amazonas, Peru
- Cape Horn International Center (CHIC), Chile
| | - Andres Mansilla
- Cape Horn International Center (CHIC), Chile
- Laboratorio de Macroalgas Antárticas y Subantárticas, Universidad de Magallanes, Punta Arenas, Chile
| | - Timothy McDermott
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Robert A Andersen
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
2
|
Van Etten J, Cho CH, Yoon HS, Bhattacharya D. Extremophilic red algae as models for understanding adaptation to hostile environments and the evolution of eukaryotic life on the early earth. Semin Cell Dev Biol 2023; 134:4-13. [PMID: 35339358 DOI: 10.1016/j.semcdb.2022.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/20/2022] [Accepted: 03/04/2022] [Indexed: 01/08/2023]
Abstract
Extremophiles have always garnered great interest because of their exotic lifestyles and ability to thrive at the physical limits of life. In hot springs environments, the Cyanidiophyceae red algae are the only photosynthetic eukaryotes able to live under extremely low pH (0-5) and relatively high temperature (35ºC to 63ºC). These extremophiles live as biofilms in the springs, inhabit acid soils near the hot springs, and form endolithic populations in the surrounding rocks. Cyanidiophyceae represent a remarkable source of knowledge about the evolution of extremophilic lifestyles and their genomes encode specialized enzymes that have applied uses. Here we review the evolutionary origin, taxonomy, genome biology, industrial applications, and use of Cyanidiophyceae as genetic models. Currently, Cyanidiophyceae comprise a single order (Cyanidiales), three families, four genera, and nine species, including the well-known Cyanidioschyzon merolae and Galdieria sulphuraria. These algae have small, gene-rich genomes that are analogous to those of prokaryotes they live and compete with. There are few spliceosomal introns and evidence exists for horizontal gene transfer as a driver of local adaptation to gain access to external fixed carbon and to extrude toxic metals. Cyanidiophyceae offer a variety of commercial opportunities such as phytoremediation to detoxify contaminated soils or waters and exploitation of their mixotrophic lifestyles to support the efficient production of bioproducts such as phycocyanin and floridosides. In terms of exobiology, Cyanidiophyceae are an ideal model system for understanding the evolutionary effects of foreign gene acquisition and the interactions between different organisms inhabiting the same harsh environment on the early Earth. Finally, we describe ongoing research with C. merolae genetics and summarize the unique insights they offer to the understanding of algal biology and evolution.
Collapse
Affiliation(s)
- Julia Van Etten
- Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
3
|
Cleaning of Phototrophic Biofilms in a Show Cave: The Case of Tesoro Cave, Spain. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Show caves have different grades of colonization by phototrophic biofilms. They may receive a varied number of visits, from a few thousand to hundreds of thousands of visitors annually. Among them, Tesoro Cave, Rincon de la Victoria, Spain, showed severe anthropic alterations, including artificial lighting. The most noticeable effect of the lighting was the growth of a dense phototrophic community of cyanobacteria, algae and bryophytes on the speleothems, walls and ground. The biofilms were dominated by the cyanobacterium Phormidium sp., the chlorophyte Myrmecia israelensis, and the rhodophyte Cyanidium sp. In many cases, the biofilms also showed an abundance of the bryophyte Eucladium verticillatum. Other cyanobacteria observed in different biofilms along the cave were: Chroococcidiopsis sp., Synechocystis sp. and Nostoc cf. edaphicum, the green microalgae Pseudococcomyxa simplex, Chlorella sp. and the diatom Diadesmis contenta. Preliminary cleaning tests on selected areas showed the effectiveness of hydrogen peroxide and sodium hypochlorite. A physicochemical treatment involving the mechanical removal of the thickest layers of biofilms was followed by chemical treatments. In total, 94% of the surface was cleaned with hydrogen peroxide, with a subsequent treatment with sodium hypochlorite in only 1% of cases. The remaining 5% was cleaned with sodium hypochlorite in areas where the biofilms were entrapped into a calcite layer and in sandy surfaces with little physical compaction. The green biofilms from the entire cave were successfully cleaned.
Collapse
|
4
|
Curien G, Lyska D, Guglielmino E, Westhoff P, Janetzko J, Tardif M, Hallopeau C, Brugière S, Dal Bo D, Decelle J, Gallet B, Falconet D, Carone M, Remacle C, Ferro M, Weber AP, Finazzi G. Mixotrophic growth of the extremophile Galdieria sulphuraria reveals the flexibility of its carbon assimilation metabolism. THE NEW PHYTOLOGIST 2021; 231:326-338. [PMID: 33764540 PMCID: PMC8252106 DOI: 10.1111/nph.17359] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/18/2021] [Indexed: 05/04/2023]
Abstract
Galdieria sulphuraria is a cosmopolitan microalga found in volcanic hot springs and calderas. It grows at low pH in photoautotrophic (use of light as a source of energy) or heterotrophic (respiration as a source of energy) conditions, using an unusually broad range of organic carbon sources. Previous data suggested that G. sulphuraria cannot grow mixotrophically (simultaneously exploiting light and organic carbon as energy sources), its photosynthetic machinery being repressed by organic carbon. Here, we show that G. sulphuraria SAG21.92 thrives in photoautotrophy, heterotrophy and mixotrophy. By comparing growth, biomass production, photosynthetic and respiratory performances in these three trophic modes, we show that addition of organic carbon to cultures (mixotrophy) relieves inorganic carbon limitation of photosynthesis thanks to increased CO2 supply through respiration. This synergistic effect is lost when inorganic carbon limitation is artificially overcome by saturating photosynthesis with added external CO2 . Proteomic and metabolic profiling corroborates this conclusion suggesting that mixotrophy is an opportunistic mechanism to increase intracellular CO2 concentration under physiological conditions, boosting photosynthesis by enhancing the carboxylation activity of Ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) and decreasing photorespiration. We discuss possible implications of these findings for the ecological success of Galdieria in extreme environments and for biotechnological applications.
Collapse
Affiliation(s)
- Gilles Curien
- Laboratoire de Physiologie Cellulaire et Végétale. Université Grenoble AlpesCNRSCEAINRAeGrenoble Cedex 938054France
| | - Dagmar Lyska
- Institute of Plant BiochemistryCluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorf40225Germany
| | - Erika Guglielmino
- Laboratoire de Physiologie Cellulaire et Végétale. Université Grenoble AlpesCNRSCEAINRAeGrenoble Cedex 938054France
| | - Phillip Westhoff
- Institute of Plant BiochemistryCluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorf40225Germany
| | - Janina Janetzko
- Institute of Plant BiochemistryCluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorf40225Germany
| | - Marianne Tardif
- EdyP Laboratoire Biologie à Grande Echelle, Université Grenoble AlpesCEAInsermBGE U1038Grenoble Cedex 938054France
| | - Clément Hallopeau
- Laboratoire de Physiologie Cellulaire et Végétale. Université Grenoble AlpesCNRSCEAINRAeGrenoble Cedex 938054France
| | - Sabine Brugière
- EdyP Laboratoire Biologie à Grande Echelle, Université Grenoble AlpesCEAInsermBGE U1038Grenoble Cedex 938054France
| | - Davide Dal Bo
- Laboratoire de Physiologie Cellulaire et Végétale. Université Grenoble AlpesCNRSCEAINRAeGrenoble Cedex 938054France
| | - Johan Decelle
- Laboratoire de Physiologie Cellulaire et Végétale. Université Grenoble AlpesCNRSCEAINRAeGrenoble Cedex 938054France
| | - Benoit Gallet
- Institut de Biologie StructuraleUniversité Grenoble AlpesCNRSCEA71 Avenue des MartyrsGrenoble38044France
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire et Végétale. Université Grenoble AlpesCNRSCEAINRAeGrenoble Cedex 938054France
| | - Michele Carone
- Genetics and Physiology of MicroalgaeInBios/Phytosystems Research UnitUniversity of LiegeLiège4000Belgium
| | - Claire Remacle
- Genetics and Physiology of MicroalgaeInBios/Phytosystems Research UnitUniversity of LiegeLiège4000Belgium
| | - Myriam Ferro
- EdyP Laboratoire Biologie à Grande Echelle, Université Grenoble AlpesCEAInsermBGE U1038Grenoble Cedex 938054France
| | - Andreas P.M. Weber
- Institute of Plant BiochemistryCluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorf40225Germany
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale. Université Grenoble AlpesCNRSCEAINRAeGrenoble Cedex 938054France
| |
Collapse
|
5
|
Liu SL, Chiang YR, Yoon HS, Fu HY. Comparative Genome Analysis Reveals Cyanidiococcus gen. nov., A New Extremophilic Red Algal Genus Sister to Cyanidioschyzon (Cyanidioschyzonaceae, Rhodophyta). JOURNAL OF PHYCOLOGY 2020; 56:1428-1442. [PMID: 33460076 DOI: 10.1111/jpy.13056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/02/2020] [Indexed: 06/12/2023]
Abstract
The taxonomic placement of strains belonging to the extremophilic red alga Galdieria maxima has been controversial due to the inconsistent phylogenetic position inferred from molecular phylogenetic analyses. Galdieria maxima nom. inval. was classified in this genus based on morphology and molecular data in the early work, but some subsequent molecular phylogenetic analyses have inferred strains of G. maxima to be closely related to the genus Cyanidioschyzon. To address this controversy, an isolated strain identified as G. maxima using the rbcL gene sequence as the genetic barcode was examined using a comprehensive analysis across morphological, physiological, and genomic traits. Herein are reported the chloroplast-, mitochondrion-, and chromosome-level nuclear genome assemblies. Comparative analysis of orthologous gene clusters and genome arrangements suggested that the genome structure of this strain was more similar to that of the generitype of Cyanidioschyzon, C. merolae than to the generitype of Galdieria, G. sulphuraria. While the ability to uptake various forms of organic carbon for growth is an important physiological trait of Galdieria, this strain was identified as an ecologically obligate photoautotroph (i.e., the inability to utilize the natural concentrations of organic carbons) and lacked various gene models predicted as sugar transporters. Based on the genomic, morphological, and physiological traits, we propose this strain to be a new genus and species, Cyanidiococcus yangmingshanensis. Re-evaluation of the 18S rRNA and rbcL gene sequences of the authentic strain of G. maxima, IPPAS-P507, with those of C. yangmingshanensis suggests that the rbcL sequences of "G. maxima" deposited in GenBank correspond to misidentified isolates.
Collapse
Affiliation(s)
- Shao-Lun Liu
- Department of Life Science & Center for Ecology and Environment, Tunghai University, Taichung, 40704, Taiwan
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Han-Yi Fu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
6
|
Carbone DA, Olivieri G, Pollio A, Melkonian M. Comparison of Galdieria growth and photosynthetic activity in different culture systems. AMB Express 2020; 10:170. [PMID: 32955638 PMCID: PMC7505917 DOI: 10.1186/s13568-020-01110-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
In the last years, the acidothermophilic red microalga Galdieria sulphuraria has been increasingly studied for industrial applications such as wastewater treatment, recovery of rare earth elements, production of phycobilins. However, even now it is not possible an industrial cultivation of this organism because biotechnological research on G. sulphuraria and allied species is relatively recent and fragmented. Having in mind a possible scale-up for commercial applications, we have compared the growth and photosynthetic performance of G. sulphuraria in four suspended systems (Inclined bubble column, Decanter Laboratory Flask, Tubular Bioreactor, Ultra-flat plate bioreactor) and one immobilized system (Twin Layer Sytem). The results showed that G. sulphuraria had the highest growth, productivity and photosynthetic performance, when grown on the immobilized system, which also offers some economics advantages.
Collapse
Affiliation(s)
- Dora Allegra Carbone
- Laboratory of Biological Oceanography, Stazione Zoologica ''A. Dohrn'' of Napoli, Villa Comunale, Napoli, I80121, Italy.
| | - Giuseppe Olivieri
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio, 80, 80125, Napoli, Italia
| | - Antonino Pollio
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia, 26, 80126, Napoli, Italia
| | - Michael Melkonian
- Institut für Pflanzenwissenschaften, Universität zu Köln, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
7
|
Cho CH, Park SI, Ciniglia C, Yang EC, Graf L, Bhattacharya D, Yoon HS. Potential causes and consequences of rapid mitochondrial genome evolution in thermoacidophilic Galdieria (Rhodophyta). BMC Evol Biol 2020; 20:112. [PMID: 32892741 PMCID: PMC7487498 DOI: 10.1186/s12862-020-01677-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The Cyanidiophyceae is an early-diverged red algal class that thrives in extreme conditions around acidic hot springs. Although this lineage has been highlighted as a model for understanding the biology of extremophilic eukaryotes, little is known about the molecular evolution of their mitochondrial genomes (mitogenomes). RESULTS To fill this knowledge gap, we sequenced five mitogenomes from representative clades of Cyanidiophyceae and identified two major groups, here referred to as Galdieria-type (G-type) and Cyanidium-type (C-type). G-type mitogenomes exhibit the following three features: (i) reduction in genome size and gene inventory, (ii) evolution of unique protein properties including charge, hydropathy, stability, amino acid composition, and protein size, and (iii) distinctive GC-content and skewness of nucleotides. Based on GC-skew-associated characteristics, we postulate that unidirectional DNA replication may have resulted in the rapid evolution of G-type mitogenomes. CONCLUSIONS The high divergence of G-type mitogenomes was likely driven by natural selection in the multiple extreme environments that Galdieria species inhabit combined with their highly flexible heterotrophic metabolism. We speculate that the interplay between mitogenome divergence and adaptation may help explain the dominance of Galdieria species in diverse extreme habitats.
Collapse
Affiliation(s)
- Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Seung In Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, University of Campania Luigi Vanvitelli, 81100, Caserta, Italy
| | - Eun Chan Yang
- Marine Ecosystem Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Louis Graf
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
8
|
Carbone DA, Olivieri G, Pollio A, Melkonian M. Biomass and phycobiliprotein production of Galdieria sulphuraria, immobilized on a twin-layer porous substrate photobioreactor. Appl Microbiol Biotechnol 2020; 104:3109-3119. [PMID: 32060692 DOI: 10.1007/s00253-020-10383-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 11/28/2022]
Abstract
The extremophile red alga Galdieria sulphuraria was successfully grown immobilized in a twin-layer porous substrate bioreactor (TL-PSBR). A maximal biomass growth rate of 10 g dry weight m-2 day-1 was measured at a photon fluence rate of 200 μmol photons m-2 s-1 with addition of 1% CO2 and a temperature of 34 °C. Under these conditions, a maximal biomass value of 232 g m-2 was attained after 33 days of growth. Phycobilin productivity, however, was highest at a lower photon fluence rate of 100 μmol photons m-2 s-1 and reached a phycobilin value of 14 g m-2, a phycobilin content in the biomass of 63 mg g-1 and a phycobilin growth rate of 0.28 g m-2 day-1 for phycocyanin and 0.23 g m-2 day-1 for allophycocyanin. Addition of CO2 was essential to enhance growth and phycobilin production in G. sulphuraria and further optimization of the cultivation process in the TL-PSBR appears possible using a multi-phase approach, higher growth temperatures and optimization of nutrient supply. It is concluded that autotrophic cultivation of G. sulphuraria in a TL-PSBR is an attractive alternative to suspension cultivation for phycobilin production and applications in bioremediation.
Collapse
Affiliation(s)
- Dora Allegra Carbone
- Laboratory of Biological Oceanography, Stazione Zoologica "A. Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Giuseppe Olivieri
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands.,Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio, 80,, 80125, Naples, Italy
| | - Antonino Pollio
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia, 26,, 80126, Naples, Italy
| | - Michael Melkonian
- Botanisches Institut, Universität zu Köln, Zülpicher Str. 47 b, 50674, Koln, Germany.,Campus Essen, Faculty of Biology, University of Duisburg-Essen,, Universitätsstr. 5, 45141, Essen, Germany
| |
Collapse
|
9
|
Prevalent pH Controls the Capacity of Galdieria maxima to Use Ammonia and Nitrate as a Nitrogen Source. PLANTS 2020; 9:plants9020232. [PMID: 32054108 PMCID: PMC7076501 DOI: 10.3390/plants9020232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 11/21/2022]
Abstract
Galdieria maxima is a polyextremophilic alga capable of diverse metabolic processes. Ammonia is widely used in culture media typical of laboratory growth. Recent reports that this species can grow on wastes promote the concept that G. maxima might have biotechnological utility. Accordingly, there is a need to know the range of pH levels that can support G. maxima growth in a given nitrogen source. Here, we examined the combined effect of pH and nitrate/ammonium source on the growth and long-term response of the photochemical process to a pH gradient in different G. maxima strains. All were able to use differing nitrogen sources, despite both the growth rate and photochemical activity were significantly affected by the combination with the pH. All strains acidified the NH4+-medium (pH < 3) except G. maxima IPPAS P507. Under nitrate at pH ≥ 6.5, no strain was able to acidify the medium; noteworthy, G. maxima ACUF551 showed a good growth performance under nitrate at pH 5, despite the alkalization of the medium.
Collapse
|
10
|
Production of Polyunsaturated Fatty Acids and Lipids from Autotrophic, Mixotrophic and Heterotrophic cultivation of Galdieria sp. strain USBA-GBX-832. Sci Rep 2019; 9:10791. [PMID: 31346188 PMCID: PMC6658668 DOI: 10.1038/s41598-019-46645-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/28/2019] [Indexed: 01/31/2023] Open
Abstract
A search for extremophile organisms producing bioactive compounds led us to isolate a microalga identified as Galdieria sp. USBA-GBX-832 from acidic thermal springs. We have cultured Galdieria sp. USBA-GBX-832 under autotrophic, mixotrophic and heterotrophic conditions and determined variations of its production of biomass, lipids and PUFAs. Greatest biomass and PUFA production occurred under mixotrophic and heterotrophic conditions, but the highest concentration of lipids occurred under autotrophic conditions. Effects of variations of carbon sources and temperature on biomass and lipid production were evaluated and factorial experiments were used to analyze the effects of substrate concentration, temperature, pH, and organic and inorganic nitrogen on biomass production, lipids and PUFAs. Production of biomass and lipids was significantly dependent on temperature and substrate concentration. Greatest accumulation of PUFAs occurred at the lowest temperature tested. PUFA profiles showed trace concentrations of arachidonic acid (C20:4) and eicosapentaenoic acid (C20:5). This is the first time synthesis of these acids has been reported in Galdieria. These findings demonstrate that under heterotrophic conditions this microalga’s lipid profile is significantly different from those observed in other species of this genus which indicates that the culture conditions evaluated are key determinants of these organisms’ responses to stress conditions and accumulation of these metabolites.
Collapse
|
11
|
Rossoni AW, Price DC, Seger M, Lyska D, Lammers P, Bhattacharya D, Weber APM. The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions. eLife 2019; 8:e45017. [PMID: 31149898 PMCID: PMC6629376 DOI: 10.7554/elife.45017] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/30/2019] [Indexed: 01/08/2023] Open
Abstract
The role and extent of horizontal gene transfer (HGT) in eukaryotes are hotly disputed topics that impact our understanding of the origin of metabolic processes and the role of organelles in cellular evolution. We addressed this issue by analyzing 10 novel Cyanidiales genomes and determined that 1% of their gene inventory is HGT-derived. Numerous HGT candidates share a close phylogenetic relationship with prokaryotes that live in similar habitats as the Cyanidiales and encode functions related to polyextremophily. HGT candidates differ from native genes in GC-content, number of splice sites, and gene expression. HGT candidates are more prone to loss, which may explain the absence of a eukaryotic pan-genome. Therefore, the lack of a pan-genome and cumulative effects fail to provide substantive arguments against our hypothesis of recurring HGT followed by differential loss in eukaryotes. The maintenance of 1% HGTs, even under selection for genome reduction, underlines the importance of non-endosymbiosis related foreign gene acquisition.
Collapse
Affiliation(s)
- Alessandro W Rossoni
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| | - Dana C Price
- Department of Plant BiologyRutgers UniversityNew BrunswickUnited States
| | - Mark Seger
- Arizona Center for Algae Technology and InnovationArizona State UniversityMesaUnited States
| | - Dagmar Lyska
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| | - Peter Lammers
- Arizona Center for Algae Technology and InnovationArizona State UniversityMesaUnited States
| | | | - Andreas PM Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| |
Collapse
|
12
|
Rossoni AW, Weber APM. Systems Biology of Cold Adaptation in the Polyextremophilic Red Alga Galdieria sulphuraria. Front Microbiol 2019; 10:927. [PMID: 31118926 PMCID: PMC6504705 DOI: 10.3389/fmicb.2019.00927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
Rapid fluctuation of environmental conditions can impose severe stress upon living organisms. Surviving such episodes of stress requires a rapid acclimation response, e.g., by transcriptional and post-transcriptional mechanisms. Persistent change of the environmental context, however, requires longer-term adaptation at the genetic level. Fast-growing unicellular aquatic eukaryotes enable analysis of adaptive responses at the genetic level in a laboratory setting. In this study, we applied continuous cold stress (28°C) to the thermoacidophile red alga G. sulphuraria, which is 14°C below its optimal growth temperature of 42°C. Cold stress was applied for more than 100 generations to identify components that are critical for conferring thermal adaptation. After cold exposure for more than 100 generations, the cold-adapted samples grew ∼30% faster than the starting population. Whole-genome sequencing revealed 757 variants located on 429 genes (6.1% of the transcriptome) encoding molecular functions involved in cell cycle regulation, gene regulation, signaling, morphogenesis, microtubule nucleation, and transmembrane transport. CpG islands located in the intergenic region accumulated a significant number of variants, which is likely a sign of epigenetic remodeling. We present 20 candidate genes and three putative cis-regulatory elements with various functions most affected by temperature. Our work shows that natural selection toward temperature tolerance is a complex systems biology problem that involves gradual reprogramming of an intricate gene network and deeply nested regulators.
Collapse
Affiliation(s)
| | - Andreas P. M. Weber
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
13
|
Del Mondo A, Iovinella M, Petriccione M, Nunziata A, Davis SJ, Cioppa D, Ciniglia C. A Spotlight on Rad52 in Cyanidiophytina (Rhodophyta): A Relic in Algal Heritage. PLANTS 2019; 8:plants8020046. [PMID: 30791384 PMCID: PMC6410040 DOI: 10.3390/plants8020046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 01/03/2023]
Abstract
The RADiation sensitive52 (RAD52) protein catalyzes the pairing between two homologous DNA sequences' double-strand break repair and meiotic recombination, mediating RAD51 loading onto single-stranded DNA ends, and initiating homologous recombination and catalyzing DNA annealing. This article reports the characterization of RAD52 homologs in the thermo-acidophilic Cyanidiophyceae whose genomes have undergone extensive sequencing. Database mining, phylogenetic inference, prediction of protein structure and evaluation of gene expression were performed in order to determine the functionality of the RAD52 protein in Cyanidiophyceae. Its current function in Cyanidiophytina could be related to stress damage response for thriving in hot and acidic environments as well as to the genetic variability of these algae, in which, conversely to extant Rhodophyta, sexual mating was never observed.
Collapse
Affiliation(s)
- Angelo Del Mondo
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy.
| | | | - Milena Petriccione
- CREA, Council for Agricultural Research and Economics, Research Centre for Olive, Citrus and Tree Fruit (OFA), Via Torrino 2, 81100 Caserta, Italy.
| | - Angelina Nunziata
- CREA, Council for Agricultural Research and Economics, Research Centre for Olive, Citrus and Tree Fruit (OFA), Via Torrino 2, 81100 Caserta, Italy.
| | - Seth J Davis
- Department of Biology, University of York, York YO105DD, UK.
| | - Diana Cioppa
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy.
| | - Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "L. Vanvitelli", 81100 Caserta, Italy.
| |
Collapse
|