1
|
Yasar Yildiz S, Finore I, Leone L, Romano I, Lama L, Kasavi C, Nicolaus B, Toksoy Oner E, Poli A. Genomic Analysis Provides New Insights Into Biotechnological and Industrial Potential of Parageobacillus thermantarcticus M1. Front Microbiol 2022; 13:923038. [PMID: 35756030 PMCID: PMC9218356 DOI: 10.3389/fmicb.2022.923038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/18/2022] [Indexed: 02/02/2023] Open
Abstract
Parageobacillus thermantarcticus strain M1 is a Gram-positive, motile, facultative anaerobic, spore forming, and thermophilic bacterium, isolated from geothermal soil of the crater of Mount Melbourne (74°22′ S, 164°40′ E) during the Italian Antarctic Expedition occurred in Austral summer 1986–1987. Strain M1 demonstrated great biotechnological and industrial potential owing to its ability to produce exopolysaccharides (EPSs), ethanol and thermostable extracellular enzymes, such as an xylanase and a β-xylosidase, and intracellular ones, such as xylose/glucose isomerase and protease. Furthermore, recent studies revealed its high potential in green chemistry due to its use in residual biomass transformation/valorization and as an appropriate model for microbial astrobiology studies. In the present study, using a systems-based approach, genomic analysis of P. thermantarcticus M1 was carried out to enlighten its functional characteristics. The elucidation of whole-genome organization of this thermophilic cell factory increased our understanding of biological mechanisms and pathways, by providing valuable information on the essential genes related to the biosynthesis of nucleotide sugar precursors, monosaccharide unit assembly, as well as the production of EPSs and ethanol. In addition, gene prediction and genome annotation studies identified genes encoding xylanolytic enzymes that are required for the conversion of lignocellulosic materials to high-value added molecules. Our findings pointed out the significant potential of strain M1 in various biotechnological and industrial applications considering its capacity to produce EPSs, ethanol and thermostable enzymes via the utilization of lignocellulosic waste materials.
Collapse
Affiliation(s)
- Songul Yasar Yildiz
- Department of Bioengineering, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ilaria Finore
- Institute of Biomolecular Chemistry (ICB), National Research Council, Naples, Italy
| | - Luigi Leone
- Institute of Biomolecular Chemistry (ICB), National Research Council, Naples, Italy
| | - Ida Romano
- Institute of Biomolecular Chemistry (ICB), National Research Council, Naples, Italy
| | - Licia Lama
- Institute of Biomolecular Chemistry (ICB), National Research Council, Naples, Italy
| | - Ceyda Kasavi
- Department of Bioengineering, Industrial Biotechnology and Systems Biology (IBSB), Marmara University, Istanbul, Turkey
| | - Barbara Nicolaus
- Institute of Biomolecular Chemistry (ICB), National Research Council, Naples, Italy
| | - Ebru Toksoy Oner
- Department of Bioengineering, Industrial Biotechnology and Systems Biology (IBSB), Marmara University, Istanbul, Turkey
| | - Annarita Poli
- Institute of Biomolecular Chemistry (ICB), National Research Council, Naples, Italy
| |
Collapse
|
2
|
Romano I, Camerlingo C, Vaccari L, Birarda G, Poli A, Fujimori A, Lepore M, Moeller R, Di Donato P. Effects of Ionizing Radiation and Long-Term Storage on Hydrated vs. Dried Cell Samples of Extremophilic Microorganisms. Microorganisms 2022; 10:190. [PMID: 35056640 PMCID: PMC8782055 DOI: 10.3390/microorganisms10010190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 01/04/2023] Open
Abstract
A main factor hampering life in space is represented by high atomic number nuclei and energy (HZE) ions that constitute about 1% of the galactic cosmic rays. In the frame of the "STARLIFE" project, we accessed the Heavy Ion Medical Accelerator (HIMAC) facility of the National Institute of Radiological Sciences (NIRS) in Chiba, Japan. By means of this facility, the extremophilic species Haloterrigena hispanica and Parageobacillus thermantarcticus were irradiated with high LET ions (i.e., Fe, Ar, and He ions) at doses corresponding to long permanence in the space environment. The survivability of HZE-treated cells depended upon either the storage time and the hydration state during irradiation; indeed, dry samples were shown to be more resistant than hydrated ones. With particular regard to spores of the species P. thermantarcticus, they were the most resistant to irradiation in a water medium: an analysis of the changes in their biochemical fingerprinting during irradiation showed that, below the survivability threshold, the spores undergo to a germination-like process, while for higher doses, inactivation takes place as a consequence of the concomitant release of the core's content and a loss of integrity of the main cellular components. Overall, the results reported here suggest that the selected extremophilic microorganisms could serve as biological model for space simulation and/or real space condition exposure, since they showed good resistance to ionizing radiation exposure and were able to resume cellular growth after long-term storage.
Collapse
Affiliation(s)
- Ida Romano
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy; (I.R.); (A.P.)
| | - Carlo Camerlingo
- SuPerconducting and Other INnovative Materials and Devices Institute, National Research Council of Italy, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy;
| | - Lisa Vaccari
- Elettra—Sincrotrone Trieste S.C.p.A. S.S., 14 km 163,5 in Area Science Park, Basovizza, 34149 Trieste, Italy; (L.V.); (G.B.)
| | - Giovanni Birarda
- Elettra—Sincrotrone Trieste S.C.p.A. S.S., 14 km 163,5 in Area Science Park, Basovizza, 34149 Trieste, Italy; (L.V.); (G.B.)
| | - Annarita Poli
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy; (I.R.); (A.P.)
| | - Akira Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Chiba 263-8555, Japan;
| | - Maria Lepore
- Dipartimento di Medicina Sperimentale, Università della Campania “L. Vanvitelli”, Via S. Maria di Costantinopoli 16, 80138 Napoli, Italy;
| | - Ralf Moeller
- German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology, DLR, Linder Höhe, D-51147 Köln, Germany; or
- Natural Sciences Department, University of Applied Sciences Bonn-Rhein-Sieg (BRSU), von-Liebig-Straße 20, D-53359 Rheinbach, Germany
| | - Paola Di Donato
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy; (I.R.); (A.P.)
- Department of Science and Technology, Parthenope University of Naples, Centro Direzionale—Isola C4, 80143 Napoli, Italy
| |
Collapse
|
3
|
Ultraviolet-C inactivation and hydrophobicity of Bacillus subtilis and Bacillus velezensis spores isolated from extended shelf-life milk. Int J Food Microbiol 2021; 349:109231. [PMID: 34022614 DOI: 10.1016/j.ijfoodmicro.2021.109231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 03/31/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022]
Abstract
Bacterial spores are important in food processing due to their ubiquity, resistance to high temperature and chemical inactivation. This work aims to study the effect of ultraviolet C (UVC) on the spores of Bacillus subtilis and Bacillus velezensis at a molecular and individual level to guide in deciding on the right parameters that must be applied during the processing of liquid foods. The spores were treated with UVC using phosphate buffer saline (PBS) as a suspension medium and their lethality rate was determined for each sample. Purified spore samples of B. velezensis and B. subtilis were treated under one pass in a UVC reactor to inactivate the spores. The resistance pattern of the spores to UVC treatment was determined using dipicolinic acid (Ca-DPA) band of spectral analysis obtained from Raman spectroscopy. Flow cytometry analysis was also done to determine the effect of the UVC treatment on the spore samples at the molecular level. Samples were processed for SEM and the percentage spore surface hydrophobicity was also determined using the Microbial Adhesion to Hydrocarbon (MATH) assay to predict the adhesion strength to a stainless-steel surface. The result shows the maximum lethality rate to be 6.5 for B. subtilis strain SRCM103689 (B47) and highest percentage hydrophobicity was 54.9% from the sample B. velezensis strain LPL-K103 (B44). The difference in surface hydrophobicity for all isolates was statistically significant (P < 0.05). Flow cytometry analysis of UVC treated spore suspensions clarifies them further into sub-populations unaccounted for by plate counting on growth media. The Raman spectroscopy identified B4002 as the isolate possessing the highest concentration of Ca-DPA. The study justifies the critical role of Ca-DPA in spore resistance and the possible sub-populations after UVC treatment that may affect product shelf-life and safety. UVC shows a promising application in the inactivation of resistant spores though there is a need to understand the effects at the molecular level to design the best parameters during processing.
Collapse
|
4
|
Camerlingo C, Di Meo G, Lepore M, Lisitskiy M, Poli A, Portaccio M, Romano I, Di Donato P. Graphene-Based and Surface-Enhanced Raman Spectroscopy for Monitoring the Physio-Chemical Response of Thermophilic Bacterial Spores to Low Temperatures Exposure. SENSORS 2020; 20:s20154150. [PMID: 32722541 PMCID: PMC7435614 DOI: 10.3390/s20154150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022]
Abstract
Monitoring the spore life cycle is one of the main issues in several fields including environmental control, sustainable ecosystems, food security, and healthcare systems. In this framework, the study of the living organism resistance to extreme conditions like those mimicking space environments is particularly interesting. The assessment of the local change of the pH level can be extremely useful for this purpose. An optical physiometer method based on the Raman response of the graphene, which is able to locally sense pH of a fluid on a micrometric scale, has been recently proposed. Due to the presence of π-bonds at the surface, the electronic doping of graphene is determined by the external conditions and can be electrochemically controlled or altered by the contact with an acid or alkaline fluid. The doping level affects the vibrational energies of the graphene that can be monitored by conventional Raman spectroscopy. In addition, Surface-Enhanced Raman Spectroscopy (SERS) can give direct information on the biochemical changes occurring in spore components. In this work, we propose the joint use of Graphene-Based Raman Spectroscopy (GbRS) and SERS for the monitoring of the response of spores to exposure to low temperatures down to 100 K. The spores of the thermophilic bacterium Parageobacillus thermantarcticus isolated from an active volcano of Antarctica (Mt. Melbourne) were investigated. These spores are particularly resistant to several stressing stimuli and able to adapt to extreme conditions like low temperatures, UV irradiation, and γ-rays exposure. The results obtained showed that the joint use of GbRS and SERS represents a valuable tool for monitoring the physio-chemical response of bacterial spores upon exposure to stressing stimuli.
Collapse
Affiliation(s)
- Carlo Camerlingo
- CNR-SPIN, Institute for Superconductivity, Innovative Materials and Devices, 80078 Pozzuoli, Italy; (C.C.); (M.L.)
| | - Giuseppe Di Meo
- CNR-ICB, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy; (G.D.M.); (A.P.); (I.R.); (P.D.D.)
| | - Maria Lepore
- Dipartimento di Medicina Sperimentale, Università della Campania “L. Vanvitelli”, Via S. Maria di Costantinopoli 16, 80138 Napoli, Italy;
- Correspondence:
| | - Mikhail Lisitskiy
- CNR-SPIN, Institute for Superconductivity, Innovative Materials and Devices, 80078 Pozzuoli, Italy; (C.C.); (M.L.)
| | - Annarita Poli
- CNR-ICB, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy; (G.D.M.); (A.P.); (I.R.); (P.D.D.)
| | - Marianna Portaccio
- Dipartimento di Medicina Sperimentale, Università della Campania “L. Vanvitelli”, Via S. Maria di Costantinopoli 16, 80138 Napoli, Italy;
| | - Ida Romano
- CNR-ICB, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy; (G.D.M.); (A.P.); (I.R.); (P.D.D.)
| | - Paola Di Donato
- CNR-ICB, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy; (G.D.M.); (A.P.); (I.R.); (P.D.D.)
- Dipartimento di Scienze e Tecnologie, Università Parthenope di Napoli, Centro Direzionale Isola C/4, 80143 Napoli, Italy
| |
Collapse
|
5
|
Parageobacillus thermantarcticus, an Antarctic Cell Factory: From Crop Residue Valorization by Green Chemistry to Astrobiology Studies. DIVERSITY 2019. [DOI: 10.3390/d11080128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Knowledge of Antarctic habitat biodiversity, both marine and terrestrial, has increased considerably in recent years, causing considerable development in the studies of life science related to Antarctica. In the Austral summer 1986–1987, a new thermophilic bacterium, Parageobacillus thermantarcticus strain M1 was isolated from geothermal soil of the crater of Mount Melbourne (74°22′ S, 164°40′ E) during the Italian Antarctic Expedition. In addition to the biotechnological potential due to the production of exopolysaccharides and thermostable enzymes, successful studies have demonstrated its use in the green chemistry for the transformation and valorization of residual biomass and its employment as a suitable microbial model for astrobiology studies. The recent acquisition of its genome sequence opens up new opportunities for the use of this versatile bacterium in still unexplored biotechnology sectors.
Collapse
|
6
|
Jaafreh S, Valler O, Kreyenschmidt J, Günther K, Kaul P. In vitro discrimination and classification of Microbial Flora of Poultry using two dispersive Raman spectrometers (microscope and Portable Fiber-Optic systems) in tandem with chemometric analysis. Talanta 2019; 202:411-425. [PMID: 31171202 DOI: 10.1016/j.talanta.2019.04.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 01/08/2023]
Abstract
Discrimination and classification of eight strains related to meat spoilage and pathogenic microorganisms commonly found in poultry meat were successfully carried out using two dispersive Raman spectrometers (Microscope and Portable Fiber-Optic systems) in combination with chemometric methods. Principal components analysis (PCA) and multi-class support vector machines (MC-SVM) were applied to develop discrimination and classification models. These models were certified using validation data sets which were successfully assigned to the correct bacterial species and even to the right strain. The discrimination of bacteria down to the strain level was performed for the pre-processed spectral data using a 3-stage model based on PCA. The spectral features and differences among the species on which the discrimination was based were clarified through PCA loadings. In MC-SVM the pre-processed spectral data was subjected to PCA and utilized to build a classification model. When using the first two components, the accuracy of the MC-SVM model was 97.64% and 93.23% for the validation data collected by the Raman Microscope and the Portable Fiber-Optic Raman system, respectively. The accuracy reached 100% for the validation data by using the first eight and ten PC's from the data collected by Raman Microscope and by Portable Fiber-Optic Raman system, respectively. The results reflect the strong discriminative power and the high performance of the developed models, the suitability of the pre-processing method used in this study and that the low accuracy of the Portable Fiber-Optic Raman system does not adversely affect the discriminative power of the developed models.
Collapse
Affiliation(s)
- Sawsan Jaafreh
- Institute of Safety and Security Research, Bonn-Rhein-Sieg University of Applied Sciences, Von Liebig-Straße 20, 53359 Rheinbach, Germany.
| | - Ole Valler
- Rhine-Waal University of Applied Sciences, Marie-Curie-Straße 1, 47533 Kleve, Germany
| | | | - Klaus Günther
- Institute of Nutritional and Food Sciences, Food Chemistry, University of Bonn, Endenicher Allee 11-13, 53115 Bonn, Germany; Institute of Bio- and Geosciences (IBG-2), Research Centre Jülich, 52425 Jülich, Germany
| | - Peter Kaul
- Institute of Safety and Security Research, Bonn-Rhein-Sieg University of Applied Sciences, Von Liebig-Straße 20, 53359 Rheinbach, Germany
| |
Collapse
|