1
|
Dong H, Yu L, Xu T, Liu Y, Fu J, He Y, Gao J, Wang J, Sun S, She Y, Zhang F. Cultivation and biogeochemical analyses reveal insights into biomineralization caused by piezotolerant iron-reducing bacteria from petroleum reservoirs and their application in MEOR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166465. [PMID: 37619717 DOI: 10.1016/j.scitotenv.2023.166465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/19/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
Interactions between minerals and iron-reducing bacteria under in-situ pressure and temperature conditions play important roles in oil extraction, residual oil methanation, and CO2 storage in petroleum reservoirs. However, the impacts of pressure on dissimilatory iron-reducing bacteria (DIRB) are poorly understood. Herein, the interactions between clay minerals and microbes under elevated hydrostatic pressure conditions were elucidated through enrichment experiments. Bioreduction experiments were performed under hydrostatic pressures of 0.1-40 MPa. Microbial diversity analysis revealed that high pressures significantly increased microbial diversity in petroleum reservoirs, which is helpful for restoring underground ecosystems in situ. The key piezotolerant iron-reducing bacteria in the samples were Shewanella and Flaviflexus. These two genera were isolated for the first time from petroleum reservoirs and identified as piezophiles. The SEM results clearly showed mineral surface dissolution. Moreover, nanoscale secondary minerals were produced during biomineralization. XRD analysis revealed that illite, albite, and clinoptilolite were present after bioreduction. The isolates showed the capacity to inhibit hydro-swelling and prevent plugging-related damage in reservoirs.
Collapse
Affiliation(s)
- Hao Dong
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Li Yu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Ting Xu
- College of Resources and Environment, Yangtze University, Wuhan 430010, China
| | - Yulong Liu
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, Cooperative Innovation Center of Unconventional Oil and Gas, College of Petroleum Engineering, Yangtze University, Wuhan 430010, China
| | - Jian Fu
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, Cooperative Innovation Center of Unconventional Oil and Gas, College of Petroleum Engineering, Yangtze University, Wuhan 430010, China
| | - Yanlong He
- College of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Ji Gao
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Jiaqi Wang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Shanshan Sun
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, Cooperative Innovation Center of Unconventional Oil and Gas, College of Petroleum Engineering, Yangtze University, Wuhan 430010, China
| | - Yuehui She
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, Cooperative Innovation Center of Unconventional Oil and Gas, College of Petroleum Engineering, Yangtze University, Wuhan 430010, China.
| | - Fan Zhang
- The Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, Ministry of Education, College of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
2
|
Scheffer G, Gieg LM. The Mystery of Piezophiles: Understudied Microorganisms from the Deep, Dark Subsurface. Microorganisms 2023; 11:1629. [PMID: 37512802 PMCID: PMC10384521 DOI: 10.3390/microorganisms11071629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Microorganisms that can withstand high pressure within an environment are termed piezophiles. These organisms are considered extremophiles and inhabit the deep marine or terrestrial subsurface. Because these microorganisms are not easily accessed and require expensive sampling methods and laboratory instruments, advancements in this field have been limited compared to other extremophiles. This review summarizes the current knowledge on piezophiles, notably the cellular and physiological adaptations that such microorganisms possess to withstand and grow in high-pressure environments. Based on existing studies, organisms from both the deep marine and terrestrial subsurface show similar adaptations to high pressure, including increased motility, an increase of unsaturated bonds within the cell membrane lipids, upregulation of heat shock proteins, and differential gene-regulation systems. Notably, more adaptations have been identified within the deep marine subsurface organisms due to the relative paucity of studies performed on deep terrestrial subsurface environments. Nevertheless, similar adaptations have been found within piezophiles from both systems, and therefore the microbial biogeography concepts used to assess microbial dispersal and explore if similar organisms can be found throughout deep terrestrial environments are also briefly discussed.
Collapse
Affiliation(s)
- Gabrielle Scheffer
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
3
|
From Surface Water to the Deep Sea: A Review on Factors Affecting the Biodegradation of Spilled Oil in Marine Environment. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Over the past century, the demand for petroleum products has increased rapidly, leading to higher oil extraction, processing and transportation, which result in numerous oil spills in coastal-marine environments. As the spilled oil can negatively affect the coastal-marine ecosystems, its transport and fates captured a significant interest of the scientific community and regulatory agencies. Typically, the environment has natural mechanisms (e.g., photooxidation, biodegradation, evaporation) to weather/degrade and remove the spilled oil from the environment. Among various oil weathering mechanisms, biodegradation by naturally occurring bacterial populations removes a majority of spilled oil, thus the focus on bioremediation has increased significantly. Helping in the marginal recognition of this promising technique for oil-spill degradation, this paper reviews recently published articles that will help broaden the understanding of the factors affecting biodegradation of spilled oil in coastal-marine environments. The goal of this review is to examine the effects of various environmental variables that contribute to oil degradation in the coastal-marine environments, as well as the factors that influence these processes. Physico-chemical parameters such as temperature, oxygen level, pressure, shoreline energy, salinity, and pH are taken into account. In general, increase in temperature, exposure to sunlight (photooxidation), dissolved oxygen (DO), nutrients (nitrogen, phosphorous and potassium), shoreline energy (physical advection—waves) and diverse hydrocarbon-degrading microorganisms consortium were found to increase spilled oil degradation in marine environments. In contrast, higher initial oil concentration and seawater pressure can lower oil degradation rates. There is limited information on the influences of seawater pH and salinity on oil degradation, thus warranting additional research. This comprehensive review can be used as a guide for bioremediation modeling and mitigating future oil spill pollution in the marine environment by utilizing the bacteria adapted to certain conditions.
Collapse
|
4
|
Ganesh Kumar A, Manisha D, Sujitha K, Magesh Peter D, Kirubagaran R, Dharani G. Genome sequence analysis of deep sea Aspergillus sydowii BOBA1 and effect of high pressure on biodegradation of spent engine oil. Sci Rep 2021; 11:9347. [PMID: 33931710 PMCID: PMC8087790 DOI: 10.1038/s41598-021-88525-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
A deep-sea fungus Aspergillus sydowii BOBA1 isolated from marine sediment at a depth of 3000 m was capable of degrading spent engine (SE) oil. The response of immobilized fungi towards degradation at elevated pressure was studied in customized high pressure reactors without any deviation in simulating in situ deep-sea conditions. The growth rate of A. sydowii BOBA1 in 0.1 MPa was significantly different from the growth at 10 MPa pressure. The degradation percentage reached 71.2 and 82.5% at atmospheric and high pressure conditions, respectively, within a retention period of 21 days. The complete genome sequence of BOBA1 consists of 38,795,664 bp in size, comprises 2582 scaffolds with predicted total coding genes of 18,932. A total of 16,247 genes were assigned with known functions and many families found to have a potential role in PAHs and xenobiotic compound metabolism. Functional genes controlling the pathways of hydrocarbon and xenobiotics compound degrading enzymes such as dioxygenase, decarboxylase, hydrolase, reductase and peroxidase were identified. The spectroscopic and genomic analysis revealed the presence of combined catechol, gentisate and phthalic acid degradation pathway. These results of degradation and genomic studies evidenced that this deep-sea fungus could be employed to develop an eco-friendly mycoremediation technology to combat the oil polluted marine environment. This study expands our knowledge on piezophilic fungi and offer insight into possibilities about the fate of SE oil in deep-sea.
Collapse
Affiliation(s)
- A. Ganesh Kumar
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - D. Manisha
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - K. Sujitha
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - D. Magesh Peter
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - R. Kirubagaran
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - G. Dharani
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| |
Collapse
|
5
|
Zlatkov N, Nadeem A, Uhlin BE, Wai SN. Eco-evolutionary feedbacks mediated by bacterial membrane vesicles. FEMS Microbiol Rev 2021; 45:fuaa047. [PMID: 32926132 PMCID: PMC7968517 DOI: 10.1093/femsre/fuaa047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/11/2020] [Indexed: 12/27/2022] Open
Abstract
Bacterial membrane vesicles (BMVs) are spherical extracellular organelles whose cargo is enclosed by a biological membrane. The cargo can be delivered to distant parts of a given habitat in a protected and concentrated manner. This review presents current knowledge about BMVs in the context of bacterial eco-evolutionary dynamics among different environments and hosts. BMVs may play an important role in establishing and stabilizing bacterial communities in such environments; for example, bacterial populations may benefit from BMVs to delay the negative effect of certain evolutionary trade-offs that can result in deleterious phenotypes. BMVs can also perform ecosystem engineering by serving as detergents, mediators in biochemical cycles, components of different biofilms, substrates for cross-feeding, defense systems against different dangers and enzyme-delivery mechanisms that can change substrate availability. BMVs further contribute to bacteria as mediators in different interactions, with either other bacterial species or their hosts. In short, BMVs extend and deliver phenotypic traits that can have ecological and evolutionary value to both their producers and the ecosystem as a whole.
Collapse
Affiliation(s)
- Nikola Zlatkov
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| | - Aftab Nadeem
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
6
|
Extremophilic Fungi and Their Role in Control of Pathogenic Microbes. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|