1
|
Novak JK, Gardner JG. Current models in bacterial hemicellulase-encoding gene regulation. Appl Microbiol Biotechnol 2024; 108:39. [PMID: 38175245 PMCID: PMC10766802 DOI: 10.1007/s00253-023-12977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
The discovery and characterization of bacterial carbohydrate-active enzymes is a fundamental component of biotechnology innovation, particularly for renewable fuels and chemicals; however, these studies have increasingly transitioned to exploring the complex regulation required for recalcitrant polysaccharide utilization. This pivot is largely due to the current need to engineer and optimize enzymes for maximal degradation in industrial or biomedical applications. Given the structural simplicity of a single cellulose polymer, and the relatively few enzyme classes required for complete bioconversion, the regulation of cellulases in bacteria has been thoroughly discussed in the literature. However, the diversity of hemicelluloses found in plant biomass and the multitude of carbohydrate-active enzymes required for their deconstruction has resulted in a less comprehensive understanding of bacterial hemicellulase-encoding gene regulation. Here we review the mechanisms of this process and common themes found in the transcriptomic response during plant biomass utilization. By comparing regulatory systems from both Gram-negative and Gram-positive bacteria, as well as drawing parallels to cellulase regulation, our goals are to highlight the shared and distinct features of bacterial hemicellulase-encoding gene regulation and provide a set of guiding questions to improve our understanding of bacterial lignocellulose utilization. KEY POINTS: • Canonical regulatory mechanisms for bacterial hemicellulase-encoding gene expression include hybrid two-component systems (HTCS), extracytoplasmic function (ECF)-σ/anti-σ systems, and carbon catabolite repression (CCR). • Current transcriptomic approaches are increasingly being used to identify hemicellulase-encoding gene regulatory patterns coupled with computational predictions for transcriptional regulators. • Future work should emphasize genetic approaches to improve systems biology tools available for model bacterial systems and emerging microbes with biotechnology potential. Specifically, optimization of Gram-positive systems will require integration of degradative and fermentative capabilities, while optimization of Gram-negative systems will require bolstering the potency of lignocellulolytic capabilities.
Collapse
Affiliation(s)
- Jessica K Novak
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, MD, USA
| | - Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
2
|
Aqeel A, Ahmed Z, Akram F, Abbas Q, Ikram-Ul-Haq. Cloning, expression and purification of cellobiohydrolase gene from Caldicellulosiruptor bescii for efficient saccharification of plant biomass. Int J Biol Macromol 2024; 271:132525. [PMID: 38797293 DOI: 10.1016/j.ijbiomac.2024.132525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/04/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Anthropogenic activities have led to a drastic shift from natural fuels to alternative renewable energy reserves that demand heat-stable cellulases. Cellobiohydrolase is an indispensable member of cellulases that play a critical role in the degradation of cellulosic biomass. This article details the process of cloning the cellobiohydrolase gene from the thermophilic bacterium Caldicellulosiruptor bescii and expressing it in Escherichia coli (BL21) CondonPlus DE3-(RIPL) using the pET-21a(+) expression vector. Multi-alignments and structural modeling studies reveal that recombinant CbCBH contained a conserved cellulose binding domain III. The enzyme's catalytic site included Asp-372 and Glu-620, which are either involved in substrate or metal binding. The purified CbCBH, with a molecular weight of 91.8 kDa, displayed peak activity against pNPC (167.93 U/mg) at 65°C and pH 6.0. Moreover, it demonstrated remarkable stability across a broad temperature range (60-80°C) for 8 h. Additionally, the Plackett-Burman experimental model was employed to assess the saccharification of pretreated sugarcane bagasse with CbCBH, aiming to evaluate the cultivation conditions. The optimized parameters, including a pH of 6.0, a temperature of 55°C, a 24-hour incubation period, a substrate concentration of 1.5% (w/v), and enzyme activity of 120 U, resulted in an observed saccharification efficiency of 28.45%. This discovery indicates that the recombinant CbCBH holds promising potential for biofuel sector.
Collapse
Affiliation(s)
- Amna Aqeel
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, 54000, Pakistan.
| | - Zeeshan Ahmed
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, 54000, Pakistan
| | - Fatima Akram
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, 54000, Pakistan
| | - Qamar Abbas
- School of Biological Sciences, University of Punjab, Lahore 54000, Pakistan
| | - Ikram-Ul-Haq
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, 54000, Pakistan
| |
Collapse
|
3
|
Tanwee TNN, Lipscomb GL, Vailionis JL, Zhang K, Bing RG, O'Quinn HC, Poole FL, Zhang Y, Kelly RM, Adams MWW. Metabolic engineering of Caldicellulosiruptor bescii for 2,3-butanediol production from unpretreated lignocellulosic biomass and metabolic strategies for improving yields and titers. Appl Environ Microbiol 2024; 90:e0195123. [PMID: 38131671 PMCID: PMC10807448 DOI: 10.1128/aem.01951-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The platform chemical 2,3-butanediol (2,3-BDO) is used to derive products, such as 1,3-butadiene and methyl ethyl ketone, for the chemical and fuel production industries. Efficient microbial 2,3-BDO production at industrial scales has not been achieved yet for various reasons, including product inhibition to host organisms, mixed stereospecificity in product formation, and dependence on expensive substrates (i.e., glucose). In this study, we explore engineering of a 2,3-BDO pathway in Caldicellulosiruptor bescii, an extremely thermophilic (optimal growth temperature = 78°C) and anaerobic bacterium that can break down crystalline cellulose and hemicellulose into fermentable C5 and C6 sugars. In addition, C. bescii grows on unpretreated plant biomass, such as switchgrass. Biosynthesis of 2,3-BDO involves three steps: two molecules of pyruvate are condensed into acetolactate; acetolactate is decarboxylated to acetoin, and finally, acetoin is reduced to 2,3-BDO. C. bescii natively produces acetoin; therefore, in order to complete the 2,3-BDO biosynthetic pathway, C. bescii was engineered to produce a secondary alcohol dehydrogenase (sADH) to catalyze the final step. Two previously characterized, thermostable sADH enzymes with high affinity for acetoin, one from a bacterium and one from an archaeon, were tested independently. When either sADH was present in C. bescii, the recombinant strains were able to produce up to 2.5-mM 2,3-BDO from crystalline cellulose and xylan and 0.2-mM 2,3-BDO directly from unpretreated switchgrass. This serves as the basis for higher yields and productivities, and to this end, limiting factors and potential genetic targets for further optimization were assessed using the genome-scale metabolic model of C. bescii.IMPORTANCELignocellulosic plant biomass as the substrate for microbial synthesis of 2,3-butanediol is one of the major keys toward cost-effective bio-based production of this chemical at an industrial scale. However, deconstruction of biomass to release the sugars for microbial growth currently requires expensive thermochemical and enzymatic pretreatments. In this study, the thermo-cellulolytic bacterium Caldicellulosiruptor bescii was successfully engineered to produce 2,3-butanediol from cellulose, xylan, and directly from unpretreated switchgrass. Genome-scale metabolic modeling of C. bescii was applied to adjust carbon and redox fluxes to maximize productivity of 2,3-butanediol, thereby revealing bottlenecks that require genetic modifications.
Collapse
Affiliation(s)
- Tania N. N. Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Gina L. Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Jason L. Vailionis
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Ke Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Hailey C. O'Quinn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Farris L. Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Tunca B, Kutlar FE, Kas A, Yilmazel YD. Enhanced biohydrogen production from high loads of unpretreated cattle manure by cellulolytic bacterium Caldicellulosiruptor bescii at 75 °C. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:401-410. [PMID: 37776811 DOI: 10.1016/j.wasman.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Caldicellulosiruptor bescii is the most thermophilic cellulolytic bacterium capable of fermenting crystalline cellulose identified to date, and it also has a superior ability to degrade plant biomass without any pretreatment. This study is the first to assess the potential of utilizing unpretreated cattle manure (UCM) as a feedstock for hydrogen (H2) production by C. bescii at a concentration range between 2.5-50 g volatile solids (VS)/L. At 50 g VS/L UCM concentrations, H2 production ceased due to inhibition of C. bescii. To alleviate the impacts of inhibition, two strategies were adopted: (i) reduction of H2 build-up in the reactor headspace via gas sparging and (ii) adaptation of C. bescii to UCM via adaptive laboratory evolution (ALE). The former increased H2 yield by 47% compared to the control reactors, where no sparging was applied. The latter increased H2 yield by 142% compared to the control reactors inoculated by the wild type C. bescii. The UCM-adapted C. bescii demonstrated a remarkable H2 yield of 161.3 ± 1.6 mL H2/g VSadded at 15 g VS/L. This yield represents a twofold increase compared to the maximum H2 yield reported in the literature amongst fermentation studies utilizing manure as feed. At 15 g VS/L, around 73% of UCM was solubilized, and the carbon balance indicated that most of the effluent carbon was in the sugar- and acid-form. The remarkable ability of C. bescii to produce H2 from UCM under non-sterile conditions presents a significant potential for sustainable biohydrogen production from renewable feedstocks.
Collapse
Affiliation(s)
- Berivan Tunca
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - Feride Ece Kutlar
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - Aykut Kas
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | | |
Collapse
|
5
|
Bing RG, Willard DJ, Crosby JR, Adams MWW, Kelly RM. Whither the genus Caldicellulosiruptor and the order Thermoanaerobacterales: phylogeny, taxonomy, ecology, and phenotype. Front Microbiol 2023; 14:1212538. [PMID: 37601363 PMCID: PMC10434631 DOI: 10.3389/fmicb.2023.1212538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
The order Thermoanaerobacterales currently consists of fermentative anaerobic bacteria, including the genus Caldicellulosiruptor. Caldicellulosiruptor are represented by thirteen species; all, but one, have closed genome sequences. Interest in these extreme thermophiles has been motivated not only by their high optimal growth temperatures (≥70°C), but also by their ability to hydrolyze polysaccharides including, for some species, both xylan and microcrystalline cellulose. Caldicellulosiruptor species have been isolated from geographically diverse thermal terrestrial environments located in New Zealand, China, Russia, Iceland and North America. Evidence of their presence in other terrestrial locations is apparent from metagenomic signatures, including volcanic ash in permafrost. Here, phylogeny and taxonomy of the genus Caldicellulosiruptor was re-examined in light of new genome sequences. Based on genome analysis of 15 strains, a new order, Caldicellulosiruptorales, is proposed containing the family Caldicellulosiruptoraceae, consisting of two genera, Caldicellulosiruptor and Anaerocellum. Furthermore, the order Thermoanaerobacterales also was re-assessed, using 91 genome-sequenced strains, and should now include the family Thermoanaerobacteraceae containing the genera Thermoanaerobacter, Thermoanaerobacterium, Caldanaerobacter, the family Caldanaerobiaceae containing the genus Caldanaerobius, and the family Calorimonaceae containing the genus Calorimonas. A main outcome of ANI/AAI analysis indicates the need to reclassify several previously designated species in the Thermoanaerobacterales and Caldicellulosiruptorales by condensing them into strains of single species. Comparative genomics of carbohydrate-active enzyme inventories suggested differentiating phenotypic features, even among strains of the same species, reflecting available nutrients and ecological roles in their native biotopes.
Collapse
Affiliation(s)
- Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - Daniel J. Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
6
|
Bing RG, Willard DJ, Manesh MJH, Laemthong T, Crosby JR, Adams MWW, Kelly RM. Complete Genome Sequences of Caldicellulosiruptor acetigenus DSM 7040, Caldicellulosiruptor morganii DSM 8990 (RT8.B8), and Caldicellulosiruptor naganoensis DSM 8991 (NA10). Microbiol Resour Announc 2023; 12:e0129222. [PMID: 36722965 PMCID: PMC10019236 DOI: 10.1128/mra.01292-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 02/02/2023] Open
Abstract
The genome sequences of three extremely thermophilic, lignocellulolytic Caldicellulosiruptor species were closed, improving previously reported multiple-contig assemblies. All 14 classified Caldicellulosiruptor spp. now have closed genomes. Genome closure will enhance bioinformatic analysis of the species, including identification of carbohydrate-active enzymes (CAZymes) and comparison against other Caldicellulosiruptor species and lignocellulolytic microorganisms.
Collapse
Affiliation(s)
- Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Daniel J. Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Mohamad J. H. Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
7
|
Laemthong T, Bing RG, Crosby JR, Manesh MJH, Adams MWW, Kelly RM. Role of cell-substrate association during plant biomass solubilization by the extreme thermophile Caldicellulosiruptor bescii. Extremophiles 2023; 27:6. [PMID: 36802247 PMCID: PMC10514702 DOI: 10.1007/s00792-023-01290-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023]
Abstract
Caldicellulosiruptor species are proficient at solubilizing carbohydrates in lignocellulosic biomass through surface (S)-layer bound and secretomic glycoside hydrolases. Tāpirins, surface-associated, non-catalytic binding proteins in Caldicellulosiruptor species, bind tightly to microcrystalline cellulose, and likely play a key role in natural environments for scavenging scarce carbohydrates in hot springs. However, the question arises: If tāpirin concentration on Caldicellulosiruptor cell walls increased above native levels, would this offer any benefit to lignocellulose carbohydrate hydrolysis and, hence, biomass solubilization? This question was addressed by engineering the genes for tight-binding, non-native tāpirins into C. bescii. The engineered C. bescii strains bound more tightly to microcrystalline cellulose (Avicel) and biomass compared to the parent. However, tāpirin overexpression did not significantly improve solubilization or conversion for wheat straw or sugarcane bagasse. When incubated with poplar, the tāpirin-engineered strains increased solubilization by 10% compared to the parent, and corresponding acetate production, a measure of carbohydrate fermentation intensity, was 28% higher for the Calkr_0826 expression strain and 18.5% higher for the Calhy_0908 expression strain. These results show that enhanced binding to the substrate, beyond the native capability, did not improve C. bescii solubilization of plant biomass, but in some cases may improve conversion of released lignocellulose carbohydrates to fermentation products.
Collapse
Affiliation(s)
- Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
- Department of Chemical Engineering, Thammasat University, Pathum Thani, 12120, Thailand
| | - Ryan G Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Mohamad J H Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA.
| |
Collapse
|
8
|
Swinnen S, Zurek C, Krämer M, Heger RM, Domeyer JE, Ziegler J, Svetlitchnyi VA, Läufer A. A novel SfaNI-like restriction-modification system in Caldicellulosiruptor extents the genetic engineering toolbox for this genus. PLoS One 2022; 17:e0279562. [PMID: 36580476 PMCID: PMC9799307 DOI: 10.1371/journal.pone.0279562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/11/2022] [Indexed: 12/30/2022] Open
Abstract
Caldicellulosiruptor is a genus of thermophilic to hyper-thermophilic microorganisms that express and secrete an arsenal of enzymes degrading lignocellulosic biomasses into fermentable sugars. Because of this distinguished feature, strains of Caldicellulosiruptor have been considered as promising candidates for consolidated bioprocessing. Although a few Caldicellulosiruptor strains with industrially relevant characteristics have been isolated to date, it is apparent that further improvement of the strains is essential for industrial application. The earlier identification of the HaeIII-like restriction-modification system in C. bescii strain DSM 6725 has formed the basis for genetic methods with the aim to improve the strain's lignocellulolytic activity and ethanol production. In this study, a novel SfaNI-like restriction-modification system was identified in Caldicellulosiruptor sp. strain BluCon085, consisting of an endonuclease and two methyltransferases that recognize the reverse-complement sequences 5'-GATGC-3' and 5'-GCATC-3'. Methylation of the adenine in both sequences leads to an asymmetric methylation pattern in the genomic DNA of strain BluCon085. Proteins with high percentage of identity to the endonuclease and two methyltransferases were identified in the genomes of C. saccharolyticus strain DSM 8903, C. naganoensis strain DSM 8991, C. changbaiensis strain DSM 26941 and Caldicellulosiruptor sp. strain F32, suggesting that a similar restriction-modification system may be active also in these strains and respective species. We show that methylation of plasmid and linear DNA by the identified methyltransferases, obtained by heterologous expression in Escherichia coli, is sufficient for successful transformation of Caldicellulosiruptor sp. strain DIB 104C. The genetic engineering toolbox developed in this study forms the basis for rational strain improvement of strain BluCon085, a derivative from strain DIB 104C with exceptionally high L-lactic acid production. The toolbox may also work for other species of the genus Caldicellulosiruptor that have so far not been genetically tractable.
Collapse
|
9
|
Crosby JR, Laemthong T, Bing RG, Zhang K, Tanwee TNN, Lipscomb GL, Rodionov DA, Zhang Y, Adams MWW, Kelly RM. Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. Appl Environ Microbiol 2022; 88:e0130222. [PMID: 36218355 PMCID: PMC9642015 DOI: 10.1128/aem.01302-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Caldicellulosiruptor species scavenge carbohydrates from runoff containing plant biomass that enters hot springs and from grasses that grow in more moderate parts of thermal features. While only a few Caldicellulosiruptor species can degrade cellulose, all known species are hemicellulolytic. The most well-characterized species, Caldicellulosiruptor bescii, decentralizes its hemicellulase inventory across five different genomic loci and two isolated genes. Transcriptomic analyses, comparative genomics, and enzymatic characterization were utilized to assign functional roles and determine the relative importance of its six putative endoxylanases (five glycoside hydrolase family 10 [GH10] enzymes and one GH11 enzyme) and two putative exoxylanases (one GH39 and one GH3) in C. bescii. Two genus-wide conserved xylanases, C. bescii XynA (GH10) and C. bescii Xyl3A (GH3), had the highest levels of sugar release on oat spelt xylan, were in the top 10% of all genes transcribed by C. bescii, and were highly induced on xylan compared to cellulose. This indicates that a minimal set of enzymes are used to drive xylan degradation in the genus Caldicellulosiruptor, complemented by hemicellulolytic inventories that are tuned to specific forms of hemicellulose in available plant biomasses. To this point, synergism studies revealed that the pairing of specific GH family proteins (GH3, -11, and -39) with C. bescii GH10 proteins released more sugar in vitro than mixtures containing five different GH10 proteins. Overall, this work demonstrates the essential requirements for Caldicellulosiruptor to degrade various forms of xylan and the differences in species genomic inventories that are tuned for survival in unique biotopes with variable lignocellulosic substrates. IMPORTANCE Microbial deconstruction of lignocellulose for the production of biofuels and chemicals requires the hydrolysis of heterogeneous hemicelluloses to access the microcrystalline cellulose portion. This work extends previous in vivo and in vitro efforts to characterize hemicellulose utilization by integrating genomic reconstruction, transcriptomic data, operon structures, and biochemical characteristics of key enzymes to understand the deployment and functionality of hemicellulases by the extreme thermophile Caldicellulosiruptor bescii. Furthermore, comparative genomics of the genus revealed both conserved and divergent mechanisms for hemicellulose utilization across the 15 sequenced species, thereby paving the way to connecting functional enzyme characterization with metabolic engineering efforts to enhance lignocellulose conversion.
Collapse
Affiliation(s)
- James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ke Zhang
- Department of Cell and Molecular Biology, College of the Environmental and Life Sciences, University of Rhode Island, Kinston, Rhode Island, USA
| | - Tania N. N. Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Gina L. Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environmental and Life Sciences, University of Rhode Island, Kinston, Rhode Island, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
10
|
Laemthong T, Bing RG, Crosby JR, Adams MWW, Kelly RM. Engineering Caldicellulosiruptor bescii with Surface Layer Homology Domain-Linked Glycoside Hydrolases Improves Plant Biomass Solubilization. Appl Environ Microbiol 2022; 88:e0127422. [PMID: 36169328 PMCID: PMC9599439 DOI: 10.1128/aem.01274-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Extremely thermophilic Caldicellulosiruptor species solubilize carbohydrates from lignocellulose through glycoside hydrolases (GHs) that can be extracellular, intracellular, or cell surface layer (S-layer) associated. Caldicellulosiruptor genomes sequenced so far encode at least one surface layer homology domain glycoside hydrolase (SLH-GH), representing six different classes of these enzymes; these can have multiple binding and catalytic domains. Biochemical characterization of a representative from each class was done to determine their biocatalytic features: four SLH-GHs from Caldicellulosiruptor kronotskyensis (Calkro_0111, Calkro_0402, Calkro_0072, and Calkro_2036) and two from Caldicellulosiruptor hydrothermalis (Calhy_1629 and Calhy_2383). Calkro_0111, Calkro_0072, and Calhy_2383 exhibited β-1,3-glucanase activity, Calkro_0402 was active on both β-1,3/1,4-glucan and β-1,4-xylan, Calkro_2036 exhibited activity on both β-1,3/1,4-glucan and β-1,4-glucan, and Calhy_1629 was active only on arabinan. Caldicellulosiruptor bescii, the only species with molecular genetic tools as well as already a strong cellulose degrader, contains only one SLH-GH, Athe_0594, a glucanase that is a homolog of Calkro_2036; the other 5 classes of SLH-GHs are absent in C. bescii. The C. bescii secretome, supplemented with individual enzymes or cocktails of SLH-GHs, increased in vitro sugar release from sugar cane bagasse and poplar. Expression of non-native SLH-GHs in vivo, either associated with the S-layer or as freely secreted enzymes, improved total carbohydrate solubilization of sugar cane bagasse and poplar by up to 45% and 23%, respectively. Most notably, expression of Calkro_0402, a xylanase/glucanase, improved xylose solubilization from poplar and bagasse by over 70% by C. bescii. While Caldicellulosiruptor species are already prolific lignocellulose degraders, they can be further improved by the strategy described here. IMPORTANCE Caldicellulosiruptor species hold promise as microorganisms that can solubilize the carbohydrate portion of lignocellulose and subsequently convert fermentable sugars into bio-based chemicals and fuels. Members of the genus have surface layer (S-layer) homology domain-associated glycoside hydrolases (SLH-GHs) that mediate attachment to biomass as well as hydrolysis of carbohydrates. Caldicellulosiruptor bescii, the most studied member of the genus, has only one SLH-GH. Expression of SLH-GHs from other Caldicellulosiruptor species in C. bescii significantly improved degradation of sugar cane bagasse and poplar. This suggests that this extremely thermophilic bacterium can be engineered to further improve its ability to degrade specific plant biomasses by inserting genes encoding SLH-GHs recruited from other Caldicellulosiruptor species.
Collapse
Affiliation(s)
- Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
11
|
Obruča S, Dvořák P, Sedláček P, Koller M, Sedlář K, Pernicová I, Šafránek D. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics. Biotechnol Adv 2022; 58:107906. [DOI: 10.1016/j.biotechadv.2022.107906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
|
12
|
Gardner JG, Schreier HJ. Unifying themes and distinct features of carbon and nitrogen assimilation by polysaccharide-degrading bacteria: a summary of four model systems. Appl Microbiol Biotechnol 2021; 105:8109-8127. [PMID: 34611726 DOI: 10.1007/s00253-021-11614-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022]
Abstract
Our current understanding of enzymatic polysaccharide degradation has come from a huge number of in vitro studies with purified enzymes. While this vast body of work has been invaluable in identifying and characterizing novel mechanisms of action and engineering desirable traits into these enzymes, a comprehensive picture of how these enzymes work as part of a native in vivo system is less clear. Recently, several model bacteria have emerged with genetic systems that allow for a more nuanced study of carbohydrate active enzymes (CAZymes) and how their activity affects bacterial carbon metabolism. With these bacterial model systems, it is now possible to not only study a single nutrient system in isolation (i.e., carbohydrate degradation and carbon metabolism), but also how multiple systems are integrated. Given that most environmental polysaccharides are carbon rich but nitrogen poor (e.g., lignocellulose), the interplay between carbon and nitrogen metabolism in polysaccharide-degrading bacteria can now be studied in a physiologically relevant manner. Therefore, in this review, we have summarized what has been experimentally determined for CAZyme regulation, production, and export in relation to nitrogen metabolism for two Gram-positive (Caldicellulosiruptor bescii and Clostridium thermocellum) and two Gram-negative (Bacteroides thetaiotaomicron and Cellvibrio japonicus) polysaccharide-degrading bacteria. By comparing and contrasting these four bacteria, we have highlighted the shared and unique features of each, with a focus on in vivo studies, in regard to carbon and nitrogen assimilation. We conclude with what we believe are two important questions that can act as guideposts for future work to better understand the integration of carbon and nitrogen metabolism in polysaccharide-degrading bacteria. KEY POINTS: • Regardless of CAZyme deployment system, the generation of a local pool of oligosaccharides is a common strategy among Gram-negative and Gram-positive polysaccharide degraders as a means to maximally recoup the energy expenditure of CAZyme production and export. • Due to the nitrogen deficiency of insoluble polysaccharide-containing substrates, Gram-negative and Gram-positive polysaccharide degraders have a diverse set of strategies for supplementation and assimilation. • Future work needs to precisely characterize the energetic expenditures of CAZyme deployment and bolster our understanding of how carbon and nitrogen metabolism are integrated in both Gram-negative and Gram-positive polysaccharide-degrading bacteria, as both of these will significantly influence a given bacterium's suitability for biotechnology applications.
Collapse
Affiliation(s)
- Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA.
| | - Harold J Schreier
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA.,Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, MD, USA
| |
Collapse
|
13
|
Rodionov DA, Rodionova IA, Rodionov VA, Arzamasov AA, Zhang K, Rubinstein GM, Tanwee TNN, Bing RG, Crosby JR, Nookaew I, Basen M, Brown SD, Wilson CM, Klingeman DM, Poole FL, Zhang Y, Kelly RM, Adams MWW. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii. mSystems 2021; 6:e0134520. [PMID: 34060910 PMCID: PMC8579813 DOI: 10.1128/msystems.01345-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Extremely thermophilic bacteria from the genus Caldicellulosiruptor can degrade polysaccharide components of plant cell walls and subsequently utilize the constituting mono- and oligosaccharides. Through metabolic engineering, ethanol and other industrially important end products can be produced. Previous experimental studies identified a variety of carbohydrate-active enzymes in model species Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor bescii, while prior transcriptomic experiments identified their putative carbohydrate uptake transporters. We investigated the mechanisms of transcriptional regulation of carbohydrate utilization genes using a comparative genomics approach applied to 14 Caldicellulosiruptor species. The reconstruction of carbohydrate utilization regulatory network includes the predicted binding sites for 34 mostly local regulators and point to the regulatory mechanisms controlling expression of genes involved in degradation of plant biomass. The Rex and CggR regulons control the central glycolytic and primary redox reactions. The identified transcription factor binding sites and regulons were validated with transcriptomic and transcription start site experimental data for C. bescii grown on cellulose, cellobiose, glucose, xylan, and xylose. The XylR and XynR regulons control xylan-induced transcriptional response of genes involved in degradation of xylan and xylose utilization. The reconstructed regulons informed the carbohydrate utilization reconstruction analysis and improved functional annotations of 51 transporters and 11 catabolic enzymes. Using gene deletion, we confirmed that the shared ATPase component MsmK is essential for growth on oligo- and polysaccharides but not for the utilization of monosaccharides. By elucidating the carbohydrate utilization framework in C. bescii, strategies for metabolic engineering can be pursued to optimize yields of bio-based fuels and chemicals from lignocellulose. IMPORTANCE To develop functional metabolic engineering platforms for nonmodel microorganisms, a comprehensive understanding of the physiological and metabolic characteristics is critical. Caldicellulosiruptor bescii and other species in this genus have untapped potential for conversion of unpretreated plant biomass into industrial fuels and chemicals. The highly interactive and complex machinery used by C. bescii to acquire and process complex carbohydrates contained in lignocellulose was elucidated here to complement related efforts to develop a metabolic engineering platform with this bacterium. Guided by the findings here, a clearer picture of how C. bescii natively drives carbohydrate utilization is provided and strategies to engineer this bacterium for optimal conversion of lignocellulose to commercial products emerge.
Collapse
Affiliation(s)
- Dmitry A. Rodionov
- Sanford-Burnhams-Prebys Medical Discovery Institute, La Jolla, California, USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Irina A. Rodionova
- Department of Bioengineering, University of California—San Diego, La Jolla, California, USA
| | - Vladimir A. Rodionov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Aleksandr A. Arzamasov
- Sanford-Burnhams-Prebys Medical Discovery Institute, La Jolla, California, USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ke Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Gabriel M. Rubinstein
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Tania N. N. Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Mirko Basen
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Biowissenschaften, Mikrobiologie, Universität Rostock, Rostock, Germany
| | - Steven D. Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Charlotte M. Wilson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- University of Otago, Dunedin, New Zealand
| | - Dawn M. Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Farris L. Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
14
|
Zhang K, Zhao W, Rodionov DA, Rubinstein GM, Nguyen DN, Tanwee TNN, Crosby J, Bing RG, Kelly RM, Adams MWW, Zhang Y. Genome-Scale Metabolic Model of Caldicellulosiruptor bescii Reveals Optimal Metabolic Engineering Strategies for Bio-based Chemical Production. mSystems 2021; 6:e0135120. [PMID: 34060912 PMCID: PMC8269263 DOI: 10.1128/msystems.01351-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/04/2021] [Indexed: 12/03/2022] Open
Abstract
Metabolic modeling was used to examine potential bottlenecks that could be encountered for metabolic engineering of the cellulolytic extreme thermophile Caldicellulosiruptor bescii to produce bio-based chemicals from plant biomass. The model utilizes subsystems-based genome annotation, targeted reconstruction of carbohydrate utilization pathways, and biochemical and physiological experimental validations. Specifically, carbohydrate transport and utilization pathways involving 160 genes and their corresponding functions were incorporated, representing the utilization of C5/C6 monosaccharides, disaccharides, and polysaccharides such as cellulose and xylan. To illustrate its utility, the model predicted that optimal production from biomass-based sugars of the model product, ethanol, was driven by ATP production, redox balancing, and proton translocation, mediated through the interplay of an ATP synthase, a membrane-bound hydrogenase, a bifurcating hydrogenase, and a bifurcating NAD- and NADP-dependent oxidoreductase. These mechanistic insights guided the design and optimization of new engineering strategies for product optimization, which were subsequently tested in the C. bescii model, showing a nearly 2-fold increase in ethanol yields. The C. bescii model provides a useful platform for investigating the potential redox controls that mediate the carbon and energy flows in metabolism and sets the stage for future design of engineering strategies aiming at optimizing the production of ethanol and other bio-based chemicals. IMPORTANCE The extremely thermophilic cellulolytic bacterium, Caldicellulosiruptor bescii, degrades plant biomass at high temperatures without any pretreatments and can serve as a strategic platform for industrial applications. The metabolic engineering of C. bescii, however, faces potential bottlenecks in bio-based chemical productions. By simulating the optimal ethanol production, a complex interplay between redox balancing and the carbon and energy flow was revealed using a C. bescii genome-scale metabolic model. New engineering strategies were designed based on an improved mechanistic understanding of the C. bescii metabolism, and the new designs were modeled under different genetic backgrounds to identify optimal strategies. The C. bescii model provided useful insights into the metabolic controls of this organism thereby opening up prospects for optimizing production of a wide range of bio-based chemicals.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Weishu Zhao
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Dmitry A. Rodionov
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Gabriel M. Rubinstein
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Diep N. Nguyen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Tania N. N. Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - James Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
15
|
Bing RG, Sulis DB, Wang JP, Adams MW, Kelly RM. Thermophilic microbial deconstruction and conversion of natural and transgenic lignocellulose. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:272-293. [PMID: 33684253 PMCID: PMC10519370 DOI: 10.1111/1758-2229.12943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The potential to convert renewable plant biomasses into fuels and chemicals by microbial processes presents an attractive, less environmentally intense alternative to conventional routes based on fossil fuels. This would best be done with microbes that natively deconstruct lignocellulose and concomitantly form industrially relevant products, but these two physiological and metabolic features are rarely and simultaneously observed in nature. Genetic modification of both plant feedstocks and microbes can be used to increase lignocellulose deconstruction capability and generate industrially relevant products. Separate efforts on plants and microbes are ongoing, but these studies lack a focus on optimal, complementary combinations of these disparate biological systems to obtain a convergent technology. Improving genetic tools for plants have given rise to the generation of low-lignin lines that are more readily solubilized by microorganisms. Most focus on the microbiological front has involved thermophilic bacteria from the genera Caldicellulosiruptor and Clostridium, given their capacity to degrade lignocellulose and to form bio-products through metabolic engineering strategies enabled by ever-improving molecular genetics tools. Bioengineering plant properties to better fit the deconstruction capabilities of candidate consolidated bioprocessing microorganisms has potential to achieve the efficient lignocellulose deconstruction needed for industrial relevance.
Collapse
Affiliation(s)
- Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Daniel B. Sulis
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695
| | - Jack P. Wang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695
| | - Michael W.W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
16
|
Glasgow E, Vander Meulen K, Kuch N, Fox BG. Multifunctional cellulases are potent, versatile tools for a renewable bioeconomy. Curr Opin Biotechnol 2021; 67:141-148. [PMID: 33550093 PMCID: PMC8366578 DOI: 10.1016/j.copbio.2020.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 11/21/2022]
Abstract
Enzyme performance is critical to the future bioeconomy based on renewable plant materials. Plant biomass can be efficiently hydrolyzed by multifunctional cellulases (MFCs) into sugars suitable for conversion into fuels and chemicals, and MFCs fall into three functional categories. Recent work revealed MFCs with broad substrate specificity, dual exo-activity/endo-activity on cellulose, and intramolecular synergy, among other novel characteristics. Binding modules and accessory catalytic domains amplify MFC and xylanase activity in a wide variety of ways, and processive endoglucanases achieve autosynergy on cellulose. Multidomain MFCs from Caldicellulosiruptor are heat-tolerant, adaptable to variable cellulose crystallinity, and may provide interchangeable scaffolds for recombinant design. Further studies of MFC properties and their reactivity with plant biomass are recommended for increasing biorefinery yields.
Collapse
Affiliation(s)
- Evan Glasgow
- Dept. of Biochemistry, University of Wisconsin - Madison, 433 Babcock Dr., Madison, WI, 53706, United States; Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 1552 University Ave, Madison, WI, 53726, United States
| | - Kirk Vander Meulen
- Dept. of Biochemistry, University of Wisconsin - Madison, 433 Babcock Dr., Madison, WI, 53706, United States; Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 1552 University Ave, Madison, WI, 53726, United States
| | - Nate Kuch
- Dept. of Biochemistry, University of Wisconsin - Madison, 433 Babcock Dr., Madison, WI, 53706, United States; Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 1552 University Ave, Madison, WI, 53726, United States
| | - Brian G Fox
- Dept. of Biochemistry, University of Wisconsin - Madison, 433 Babcock Dr., Madison, WI, 53706, United States; Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 1552 University Ave, Madison, WI, 53726, United States.
| |
Collapse
|
17
|
Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli DK, Puri M. Enzyme systems of thermophilic anaerobic bacteria for lignocellulosic biomass conversion. Int J Biol Macromol 2020; 168:572-590. [PMID: 33309672 DOI: 10.1016/j.ijbiomac.2020.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022]
Abstract
Economic production of lignocellulose degrading enzymes for biofuel industries is of considerable interest to the biotechnology community. While these enzymes are widely distributed in fungi, their industrial production from other sources, particularly by thermophilic anaerobic bacteria (growth Topt ≥ 60 °C), is an emerging field. Thermophilic anaerobic bacteria produce a large number of lignocellulolytic enzymes having unique structural features and employ different schemes for biomass degradation, which can be classified into four systems namely; 'free enzyme system', 'cell anchored enzymes', 'complex cellulosome system', and 'multifunctional multimodular enzyme system'. Such enzymes exhibit high specific activity and have a natural ability to withstand harsh bioprocessing conditions. However, achieving a higher production of these thermostable enzymes at current bioprocessing targets is challenging. In this review, the research opportunities for these distinct enzyme systems in the biofuel industry and the associated technological challenges are discussed. The current status of research findings is highlighted along with a detailed description of the categorization of the different enzyme production schemes. It is anticipated that high temperature-based bioprocessing will become an integral part of sustainable bioenergy production in the near future.
Collapse
Affiliation(s)
- Nisha Singh
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia; DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Anshu S Mathur
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Ravi P Gupta
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Deepak K Tuli
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Munish Puri
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia; Medical Biotechnology, Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia.
| |
Collapse
|
18
|
Rubinstein GM, Lipscomb GL, Williams-Rhaesa AM, Schut GJ, Kelly RM, Adams MWW. Engineering the cellulolytic extreme thermophile Caldicellulosiruptor bescii to reduce carboxylic acids to alcohols using plant biomass as the energy source. J Ind Microbiol Biotechnol 2020; 47:585-597. [PMID: 32783103 DOI: 10.1007/s10295-020-02299-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/27/2020] [Indexed: 01/13/2023]
Abstract
Caldicellulosiruptor bescii is the most thermophilic cellulolytic organism yet identified (Topt 78 °C). It grows on untreated plant biomass and has an established genetic system thereby making it a promising microbial platform for lignocellulose conversion to bio-products. Here, we investigated the ability of engineered C. bescii to generate alcohols from carboxylic acids. Expression of aldehyde ferredoxin oxidoreductase (aor from Pyrococcus furiosus) and alcohol dehydrogenase (adhA from Thermoanaerobacter sp. X514) enabled C. bescii to generate ethanol from crystalline cellulose and from biomass by reducing the acetate produced by fermentation. Deletion of lactate dehydrogenase in a strain expressing the AOR-Adh pathway increased ethanol production. Engineered strains also converted exogenously supplied organic acids (isobutyrate and n-caproate) to the corresponding alcohol (isobutanol and hexanol) using both crystalline cellulose and switchgrass as sources of reductant for alcohol production. This is the first instance of an acid to alcohol conversion pathway in a cellulolytic microbe.
Collapse
Affiliation(s)
- Gabriel M Rubinstein
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | | | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
19
|
Exploration of Two Pectate Lyases from Caldicellulosiruptor bescii Reveals that the CBM66 Module Has a Crucial Role in Pectic Biomass Degradation. Appl Environ Microbiol 2020; 86:AEM.00787-20. [PMID: 32532871 DOI: 10.1128/aem.00787-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023] Open
Abstract
Pectin deconstruction is the initial step in breaking the recalcitrance of plant biomass by using selected microorganisms that encode pectinolytic enzymes. Pectate lyases that cleave the α-1,4-galacturonosidic linkage of pectin are widely used in industries such as papermaking and fruit softening. However, there are few reports on pectate lyases with good thermostability. Here, two pectate lyases (CbPL3 and CbPL9) from a hyperthermophilic bacterium, Caldicellulosiruptor bescii, belonging to family 3 and family 9 polysaccharide lyases, respectively, were investigated. The biochemical properties of the two CbPLs were shown to be similar under optimized conditions of 80°C to 85°C and pH 8 to 9. However, the degradation products from pectin and polygalacturonic acids (pGAs) were different. A family 66 carbohydrate-binding module (CbCBM66) located in the N terminus of the two CbPLs shares 100% amino acid identity. A CbCBM66-truncated mutant of CbPL9 showed lower activities than the wild type, whereas CbPL3 with a CbCBM66 knockout portion was reported to have enhanced activities, thereby revealing the different effect of CbCBM66. Prediction by the I-TASSER server revealed that CbCBM66 is structurally close to BsCBM66 from Bacillus subtilis; however, the COFACTOR and COACH programs indicated that the substrate-binding sites between CbCBM66 and BsCBM66 are different. Furthermore, a substrate-binding assay indicated that the catalytic domains in the two CbPLs had strong affinities for pectate-related substrates, but CbCBM66 showed a weak interaction with a number of lignocellulosic carbohydrates. Finally, scanning electron microscopy (SEM) analysis and a total reducing sugar assay showed that the two enzymes could improve the saccharification of switchgrass. The two CbPLs are impressive sources for the degradation of plant biomass.IMPORTANCE Thermophilic proteins could be implemented in diverse industrial applications. We sought to characterize two pectate lyases, CbPL3 and CbPL9, from a thermophilic bacterium, Caldicellulosiruptor bescii The two enzymes share a high optimum temperature, a low optimum pH, and good thermostability at the evaluated temperature. A family 66 carbohydrate-binding module (CbCBM66) was identified in the two CbPLs, sharing 100% amino acid identity. The deletion of CbCBM66 dramatically decreased the activity of CbPL9 but increased the activity and thermostability of CbPL3, suggesting different roles of CbCBM66 in the two enzymes. Moreover, the degradation products of the two CbPLs were different. These results revealed that these enzymes could represent potential pectate lyases for applications in the paper and textile industries.
Collapse
|