1
|
Zhang Y, He YC, Ma C. Efficient synthesis of vanillylamine through bioamination of lignin-derived vanillin by recombinant E. coli containing ω-transaminase from Caulobacter sp. D5 in dimethyl sulfoxide-water. BIORESOURCE TECHNOLOGY 2024; 413:131526. [PMID: 39321936 DOI: 10.1016/j.biortech.2024.131526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/18/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Lignin is a plentiful and readily accessible renewable resource. Vanillylamine is a crucial raw material used to synthesize pharmaceuticals and high-value furan compounds that can be acquired by aminating lignin-derived vanillin (Van). However, effectually achieving the biocatalytic synthesis of vanillylamine has remained challenging. In this study, a dimethyl sulfoxide (DMSO)-H2O (1:9, vol/vol) bioreaction medium was constructed, and a recombinant E. coli ATA1012 carrying ω-transaminase from Caulobacter sp. D5 was used as the ω-transaminase biocatalyst to acquire the effectual biocatalytic synthesis of vanillylamine. Under optimized bioreaction conditions (37 ℃ and pH 7.5) by supplementary of isopropylamine (IPA) (Van/IPA = 1:5, mol/mol), 80-100 mM Van could be effectually converted by ATA1012 whole cells in DMSO-H2O (1:9, vol/vol) within 12 h, yielding 91.2 %-95.4 % vanillylamine, with >99 % selectivity. An efficient amination process was developed using ATA1012 with superior transaminase catalytic activity and substrate tolerance to effectively convert Van to vanillylamine in a DMSO-H2O medium.
Collapse
Affiliation(s)
- Yizhen Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu-Cai He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
2
|
Liu Y, Jia K, Chen H, Wang Z, Zhao W, Zhu L. Cold-adapted enzymes: mechanisms, engineering and biotechnological application. Bioprocess Biosyst Eng 2023; 46:1399-1410. [PMID: 37486422 DOI: 10.1007/s00449-023-02904-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
Most cold-adapted enzymes display high catalytic activity at low temperatures (20-25 °C) and can still maintain more than 40-50% of their maximum activity at lower temperatures (0-10 °C) but are inactivated after a moderate increase in temperature. The activity of some cold-adapted enzymes increases significantly in the presence of high salt concentrations and metal ions. Interestingly, we also observed that some cold-adapted enzymes have a wide range of optimum temperatures, exhibiting not only maximum activity under low-temperature conditions but also the ability to maintain high enzyme activity under high-temperature conditions, which is a novel feature of cold-adapted enzymes. This unique property of cold-adapted enzymes is generally attractive for biotechnological and industrial applications because these enzymes can reduce energy consumption and the chance of microbial contamination, thereby lowering the production costs and maintaining the flavor, taste and quality of foods. How high catalytic activity is maintained at low temperatures remains unknown. The relationship between the structure of cold-adapted enzymes and their activity, flexibility and stability is complex, and thus far, a unified explanation has not been provided. Herein, we systematically review the sources, catalytic characteristics and cold adaptation of enzymes from four enzymes categories systematically and discuss how these properties may be exploited in biotechnology. A thorough understanding of the properties, catalytic mechanisms, and engineering of cold-adapted enzymes is critical for future biotechnological applications in the detergent industry and food and beverage industries.
Collapse
Affiliation(s)
- Yan Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Kaizhi Jia
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Hongyang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Zhulin Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Wei Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Liwen Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
3
|
Transaminase-mediated chiral selective synthesis of (1R)-(3-methylphenyl)ethan-1-amine from 1-(3-methylphenyl)ethan-1-one: process minutiae, optimization, characterization and 'What If studies'. Bioprocess Biosyst Eng 2023; 46:207-225. [PMID: 36463332 DOI: 10.1007/s00449-022-02824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022]
Abstract
Transaminases capable of carrying out chiral selective transamination of 1-(3-methylphenyl)ethan-1-one to (1R)-(3-methylphenyl)ethan-1-amine were screened, and ATA-025 was the best enzyme, while dimethylsulfoxide (10% V/V) was the best co-solvent for said bioconversion. The variables such as enzyme loading, substrate loading, temperature, and pH for development of process displaying maximum conversion with good product formation and higher yield were optimized. The ambient processing conditions were 10% enzyme loading/50 g/L substrate loading/45 °C/pH 8.0, and 5% enzyme loading/36.78 g/L substrate loading/42.66 °C/pH 8.2 displaying maximum conversion 99.01 ± 2.47% and 96.115 ± 1.97%, and 76.93 ± 1.05% and 73.12 ± 1.04% yield with one factor at a time approach and numerical optimization with Box Behnken Design, respectively. In the final optimized reaction, ATA-025 showed the highest 99.22 ± 2.61% conversion, 49.55 g/L product formation, with an actual product recovery of 38.16 g corresponding to a product yield 77.03 ± 1.01% with respect to the product formed after reaction. The purity of recovered product (1R)-(3-methylphenyl)ethan-1-amine formed was ≥ 99% (RP-HPLC), and chiral purity ≥ 98.5% (Chiral-GC), and it was also confirmed and characterized with instrumental methods using boiling point, LC-MS, ATR-FTIR, and 1H NMR. The findings of 'What If' studies performed by investigating timely progress of reaction on gram scale by drastically changing the process parameters revealed a substantial modification in process variables to achieve desired results. (1R)-(3-methylphenyl)ethan-1-amine synthesized by green, facile and novel enzymatic approach with an optimized process could be used for synthesis of different active pharma entities.
Collapse
|
4
|
Jin LQ, Shentu JK, Liu HL, Shao TC, Liu ZQ, Xue YP, Zheng YG. Enhanced catalytic activity of recombinant transaminase by molecular modification to improve L-phosphinothricin production. J Biotechnol 2021; 343:7-14. [PMID: 34763007 DOI: 10.1016/j.jbiotec.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 11/19/2022]
Abstract
Transaminases catalyze the transfer of an amino group from a donor to a keto group of an acceptor substrate and are applicable to the asymmetric synthesis of herbicide L-phosphinothricin (L-PPT). Here, the important residue sites (C390, I22, V52, R141, Y138 and D239) of transaminase from Salmonella enterica (SeTA) were modified at the adjacency of the substrate-binding pocket to improve the enzyme activity. Among the constructed mutant library, the SeTA-Y138F mutant displayed higher activity than the wild-type enzyme. Compared to the wild-type, SeTA-Y138F showed improved catalytic efficiency with a 4.36-fold increase. The Km and kcat of SeTA -Y138F toward 4-(hydroxy(methyl) phosphoryl)-2-oxobutanoic acid (PPO) were 26.39 mM and 34.28 s-1, respectively. Subsequently, the three-enzyme co-expression system of E. coli BL21 (DE3)/pACYCDuet-SeTA-Y138F/pETDuet-AlaDH-BsGDH was developed by combining a alanine dehydrogenase (AlaDH) to recycle the byproduct of amino donor, a glucose dehydrogenase (BsGDH) for cofactor recycling. Under the optimized conditions, an excellent L-PPT yield of 90.8% was achieved by the whole-cell biotransformation with 500 mM PPO. It exhibited the tri-enzymatic coupling system was potential for effective production of target L-PPT.
Collapse
Affiliation(s)
- Li-Qun Jin
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jun-Kang Shentu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Han-Lin Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tian-Chen Shao
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ya-Ping Xue
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
5
|
Kumar A, Mukhia S, Kumar R. Industrial applications of cold-adapted enzymes: challenges, innovations and future perspective. 3 Biotech 2021; 11:426. [PMID: 34567931 DOI: 10.1007/s13205-021-02929-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Extreme cold environments are potential reservoirs of microorganisms producing unique and novel enzymes in response to environmental stress conditions. Such cold-adapted enzymes prove to be valuable tools in industrial biotechnology to meet the increasing demand for efficient biocatalysts. The inherent properties like high catalytic activity at low temperature, high specific activity and low activation energy make the cold-adapted enzymes well suited for application in various industries. The interest in this group of enzymes is expanding as they are the preferred alternatives to harsh chemical synthesis owing to their biodegradable and non-toxic nature. Irrespective of the multitude of applications, the use of cold-adapted enzymes at the industrial level is still limited. The current review presents the unique adaptive features and the role of cold-adapted enzymes in major industries like food, detergents, molecular biology and bioremediation. The review highlights the significance of omics technology i.e., metagenomics, metatranscriptomics and metaproteomics in enzyme bioprospection from extreme environments. It further points out the challenges in using cold-adapted enzymes at the industrial level and the innovations associated with novel enzyme prospection strategies. Documentations on cold-adapted enzymes and their applications are abundant; however, reports on the role of omics tools in exploring cold-adapted enzymes are still scarce. So, the review covers the aspect concerning the novel techniques for enzyme discovery from nature.
Collapse
Affiliation(s)
- Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002 India
| | - Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
| |
Collapse
|