1
|
Nakakura T, Horiguchi K, Suzuki T. Collagen XIII Is the Key Molecule of Neurovascular Junctions in the Neuroendocrine System. Neuroendocrinology 2024; 114:658-669. [PMID: 38643753 DOI: 10.1159/000538976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Axons of magnocellular neurosecretory cells project from the hypothalamus to the posterior lobe (PL) of the pituitary. In the PL, a wide perivascular space exists between the outer basement membrane (BM), where nerve axons terminate, and the inner BM lining the fenestrated capillaries. Hypothalamic axon terminals and outer BMs in the PL form neurovascular junctions. We previously had found that collagen XIII is strongly localized in the outer BMs. In this study, we investigated the role of collagen XIII in the PL of rat pituitaries. METHODS We first studied the expression of Col13a1, the gene encoding the α1 chains of collagen XIII, in rat pituitaries via quantitative real-time polymerase chain reaction and in situ hybridization. We observed the distribution of COL13A1 in the rat pituitary using immunohistochemistry and immunoelectron microscopy. We examined the expression of Col13a1 and the distribution of COL13A1 during the development of the pituitary. In addition, we examined the effects of water deprivation and arginine vasopressin (AVP) signaling on the expression of Col13a1 in the PL. RESULTS Col13a1 was expressed in NG2-positive pericytes, and COL13A1 signals were localized in the outer BM of the PL. The expression of Col13a1 was increased by water deprivation and was regulated via the AVP/AVPR1A/Gαq/11 cascade in pericytes of the PL. CONCLUSION These results suggest that pericytes surrounding fenestrated capillaries in the PL secrete COL13A1 and are involved in the construction of neurovascular junctions. COL13A1 is localized in the outer BM surrounding capillaries in the PL and may be involved in the connection between capillaries and axon terminals.
Collapse
Affiliation(s)
- Takashi Nakakura
- Department of Anatomy, Teikyo University School of Medicine, Tokyo, Japan
| | - Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo, Japan
| | - Takeshi Suzuki
- Department of Biology, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
2
|
Gómez-Domínguez EG, Toriz CG, González-Pozos S, González-Del-Pliego M, Aguirre-Benítez EL, Pérez-Torres A, Flores-Martinez YM, Solano-Agama C, Rodríguez-Mata V, García-Godínez A, Martínez-Fong D, Mendoza-Garrido ME. Characterization of the rat pituitary capsule: Evidence that the cerebrospinal fluid filled the pituitary cleft and the inner side of the capsule. PLoS One 2023; 18:e0286399. [PMID: 37235567 DOI: 10.1371/journal.pone.0286399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
In humans, the pituitary gland is covered by a fibrous capsule and is considered a continuation of the meningeal sheath. However, in rodents some studies concluded that only the pars tuberalis (PT) and pars nervosa (PN) are enwrapped by the pia mater, while others showed that the whole gland is covered by this sheath. At PT the median eminence subarachnoid drains cerebrospinal fluid (CSF) to its cisternal system representing a pathway to the hypothalamus. In the present study we examined the rat pituitary capsule to elucidate its configuration, its physical interaction with the pituitary border and its relationship with the CSF. Furthermore, we also revisited the histology of the pituitary cleft and looked whether CSF drained in it. To answer such questions, we used scanning and transmission electron microscopy, intracerebroventricular infusion of Evan´s blue, fluorescent beads, and sodium fluorescein. The latter was measured in the pars distalis (PD) and various intracranial tissues. We found a pituitary capsule resembling leptomeninges, thick at the dorsal side of the pars intermedia (PI) and PD, thicker at the level of PI in contiguity with the PN and thinner at the rostro-ventral side as a thin membrane of fibroblast-like cells embedded in a fibrous layer. The capsule has abundant capillaries on all sides. Our results showed that the CSFs bathe between the capsule and the surface of the whole gland, and ciliate cells are present in the pituitary border. Our data suggest that the pituitary gland intercommunicates with the central nervous system (CNS) through the CSF.
Collapse
Affiliation(s)
- Edgar Giovanhi Gómez-Domínguez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - César Gabriel Toriz
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - Sirenia González-Pozos
- Coordinación General de Servicios Experimentales, Microscopía Electrónica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - Margarita González-Del-Pliego
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Elsa Liliana Aguirre-Benítez
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Yazmin Monserrat Flores-Martinez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - Carmen Solano-Agama
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - Verónica Rodríguez-Mata
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alejandro García-Godínez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - Daniel Martínez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - María Eugenia Mendoza-Garrido
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
3
|
The multiciliated cells in Rathke's cleft express CYP26A1 and respond to retinoic acid in the pituitary. Cell Tissue Res 2022; 388:583-594. [PMID: 35316373 DOI: 10.1007/s00441-022-03614-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/11/2022] [Indexed: 11/02/2022]
Abstract
The adenohypophysis consists of the anterior and intermediate lobes (AL and IL). The marginal cell layer (MCL), including the ventral region of the IL and the dorsal region of the AL lining the Rathke's cleft, acts as the primary stem/progenitor cell niches in adult adenohypophysis. The cells of the MCL on the IL side consisted of cluster of differentiation 9 (CD9)-positive stem/progenitor cells with or without motile cilia. However, any additional cellular properties of multiciliated CD9-positive cells are not known. The present study aimed to identify the character of the multiciliated cells in stem cell niche of the pituitary gland. We observed the fine structure of the multiciliated cells in the MCL of male Wistar rats at an early stage after birth and in adulthood (P60) using scanning electron microscopy. Since the previous study showed that the MCL cells of adult rats synthesize retinoic acid (RA), the present study determined whether the multiciliated cells are involved in RA regulation by the expression of retinal aldehyde dehydrogenase 1 (RALDH1) and CYP26A1, an enzyme synthesizing and degrading RA, respectively. Results showed that 96% of multiciliated cells in adult male rats expressed CYP26A1, while 60% expressed RALDH1. Furthermore, the isolated CD9-positive cells from the IL side MCL responded to RA and activated the degradation system of RA by increasing Cyp26a1 expression. These findings indicated that multiciliated cells are involved in RA metabolism in the MCL. Our observations provide novel insights regarding the stem cell niche of the adult pituitary.
Collapse
|
4
|
Khan N, Pelletier D, McAlear TS, Croteau N, Veyron S, Bayne AN, Black C, Ichikawa M, Khalifa AAZ, Chaaban S, Kurinov I, Brouhard G, Bechstedt S, Bui KH, Trempe JF. Crystal structure of human PACRG in complex with MEIG1 reveals roles in axoneme formation and tubulin binding. Structure 2021; 29:572-586.e6. [PMID: 33529594 DOI: 10.1016/j.str.2021.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
The Parkin co-regulated gene protein (PACRG) binds at the inner junction between doublet microtubules of the axoneme, a structure found in flagella and cilia. PACRG binds to the adaptor protein meiosis expressed gene 1 (MEIG1), but how they bind to microtubules is unknown. Here, we report the crystal structure of human PACRG in complex with MEIG1. PACRG adopts a helical repeat fold with a loop that interacts with MEIG1. Using the structure of the axonemal doublet microtubule from the protozoan Chlamydomonas reinhardtii and single-molecule fluorescence microscopy, we propose that PACRG binds to microtubules while simultaneously recruiting free tubulin to catalyze formation of the inner junction. We show that the homologous PACRG-like protein also mediates dual tubulin interactions but does not bind MEIG1. Our findings establish a framework to assess the function of the PACRG family of proteins and MEIG1 in regulating axoneme assembly.
Collapse
Affiliation(s)
- Nimra Khan
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Dylan Pelletier
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Thomas S McAlear
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Nathalie Croteau
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Simon Veyron
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Andrew N Bayne
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Corbin Black
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Muneyoshi Ichikawa
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada
| | - Ahmad Abdelzaher Zaki Khalifa
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Sami Chaaban
- Department of Biology, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Igor Kurinov
- NECAT, Cornell University, Department of Chemistry and Chemical Biology, Argonne, IL, USA
| | - Gary Brouhard
- Department of Biology, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Susanne Bechstedt
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Khanh Huy Bui
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Nakakura T, Suzuki T, Tanaka H, Arisawa K, Miyashita T, Nekooki-Machida Y, Kurosawa T, Tega Y, Deguchi Y, Hagiwara H. Fibronectin is essential for formation of fenestrae in endothelial cells of the fenestrated capillary. Cell Tissue Res 2021; 383:823-833. [PMID: 32910242 DOI: 10.1007/s00441-020-03273-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
Endothelial fenestrae are transcellular pores that pierce the capillary walls in endocrine glands such as the pituitary. The fenestrae are covered with a thin fibrous diaphragm consisting of the plasmalemma vesicle-associated protein (PLVAP) that clusters to form sieve plates. The basal surface of the vascular wall is lined by basement membrane (BM) composed of various extracellular matrices (ECMs). However, the relationship between the ECMs and the endothelial fenestrae is still unknown. In this study, we isolated fenestrated endothelial cells from the anterior lobe of the rat pituitary, using a dynabeads-labeled antibody against platelet endothelial cell adhesion molecule 1 (PECAM1). We then analyzed the gene expression levels of several endothelial marker genes and genes for integrin α subunits, which function as the receptors for ECMs, by real-time polymerase chain reaction (PCR). The results showed that the genes for the integrin α subunit, which binds to collagen IV, fibronectin, laminin-411, or laminin-511, were highly expressed. When the PECAM1-positive cells were cultured for 7 days on collagen IV-, fibronectin-, laminins-411-, or laminins-511-coated coverslips, the sieve plate structures equipped with probably functional fenestrae were maintained only when the cells were cultured on fibronectin. Additionally, real-time PCR analysis showed that the fibronectin coating was effective in maintaining the expression pattern of several endothelial marker genes that were preferentially expressed in the endothelial cells of the fenestrated capillaries. These results indicate that fibronectin functions as the principal factor in the maintenance of the sieve plate structures in the endothelial cells of the fenestrated capillary.
Collapse
Affiliation(s)
- Takashi Nakakura
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan.
| | - Takeshi Suzuki
- Department of Biology, Sapporo Medical University, Sapporo, Japan
| | - Hideyuki Tanaka
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Kenjiro Arisawa
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Toshio Miyashita
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Yoko Nekooki-Machida
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Toshiki Kurosawa
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Yuma Tega
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Yoshiharu Deguchi
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Haruo Hagiwara
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan
| |
Collapse
|
6
|
Nakakura T, Suzuki T, Horiguchi K, Tanaka H, Arisawa K, Miyashita T, Nekooki-Machida Y, Hagiwara H. Fibronectin-integrin signaling regulates PLVAP localization at endothelial fenestrae by microtubule stabilization. Cell Tissue Res 2021; 384:449-463. [PMID: 33447878 DOI: 10.1007/s00441-020-03326-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023]
Abstract
Endothelial fenestrae are the transcellular pores existing on the capillary walls which are organized in clusters referred to as sieve plates. They are also divided by a diaphragm consisting of plasmalemma vesicle-associated protein (PLVAP). In this study, we examined the involvement of fibronectin signaling in the formation of fenestra and diaphragm in endothelial cells. Results showed that Itga5 and Itgb1 were expressed in PECAM1-positive endothelial cells isolated from the anterior lobe (AL) of the rat pituitary, and integrin α5 was localized at the fenestrated capillaries of the rat pituitary and cultured PECAM1-positive endothelial cells isolated from AL (CECAL). Inhibition of both integrin α5β1 and FAK, a key molecule for integrin-microtubule signaling, respectively, by ATN-161 and FAK inhibitor 14, caused the delocalization of PLVAP at the sieve plates and depolymerization of microtubules in CECAL. Paclitaxel prevented the delocalization of PLVAP by the inhibition of integrin α5β1. Microtubule depolymerization induced by colcemid also caused the delocalization of PLVAP. Treatment of CECAL with ATN-161 and colcemid caused PLVAP localization at the Golgi apparatus. The localization of PLVAP at the sieve plates was inhibited by BFA treatment in a time-dependent manner and spread diffusely to the cytoplasm. These results indicate that a constant supply of PLVAP proteins by the endomembrane system via the Golgi apparatus is essential for the localization of PLVAP at sieve plates. In conclusion, the endomembrane transport pathway from the Golgi apparatus to sieve plates requires microtubule cytoskeletons, which are regulated by fibronectin-integrin α5β1 signaling.
Collapse
Affiliation(s)
- Takashi Nakakura
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, Tokyo, Japan.
| | - Takeshi Suzuki
- Department of Biology, Sapporo Medical University, Sapporo, Japan
| | - Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo, Japan
| | - Hideyuki Tanaka
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, Tokyo, Japan
| | - Kenjiro Arisawa
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, Tokyo, Japan
| | - Toshio Miyashita
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoko Nekooki-Machida
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, Tokyo, Japan
| | - Haruo Hagiwara
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Fujiwara K, Tsukada T, Horiguchi K, Fujiwara Y, Takemoto K, Nio-Kobayashi J, Ohno N, Inoue K. Aldolase C is a novel molecular marker for folliculo-stellate cells in rodent pituitary. Cell Tissue Res 2020; 381:273-284. [DOI: 10.1007/s00441-020-03200-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/03/2020] [Indexed: 12/31/2022]
|