1
|
Applying Automatic Translation for Optical Music Recognition’s Encoding Step. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Optical music recognition is a research field whose efforts have been mainly focused, due to the difficulties involved in its processes, on document and image recognition. However, there is a final step after the recognition phase that has not been properly addressed or discussed, and which is relevant to obtaining a standard digital score from the recognition process: the step of encoding data into a standard file format. In this paper, we address this task by proposing and evaluating the feasibility of using machine translation techniques, using statistical approaches and neural systems, to automatically convert the results of graphical encoding recognition into a standard semantic format, which can be exported as a digital score. We also discuss the implications, challenges and details to be taken into account when applying machine translation techniques to music languages, which are very different from natural human languages. This needs to be addressed prior to performing experiments and has not been reported in previous works. We also describe and detail experimental results, and conclude that applying machine translation techniques is a suitable solution for this task, as they have proven to obtain robust results.
Collapse
|
2
|
Staff, Symbol and Melody Detection of Medieval Manuscripts Written in Square Notation Using Deep Fully Convolutional Networks. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Even today, the automatic digitisation of scanned documents in general, but especially the automatic optical music recognition (OMR) of historical manuscripts, still remains an enormous challenge, since both handwritten musical symbols and text have to be identified. This paper focuses on the Medieval so-called square notation developed in the 11th–12th century, which is already composed of staff lines, staves, clefs, accidentals, and neumes that are roughly spoken connected single notes. The aim is to develop an algorithm that captures both the neumes, and in particular its melody, which can be used to reconstruct the original writing. Our pipeline is similar to the standard OMR approach and comprises a novel staff line and symbol detection algorithm based on deep Fully Convolutional Networks (FCN), which perform pixel-based predictions for either staff lines or symbols and their respective types. Then, the staff line detection combines the extracted lines to staves and yields an F 1 -score of over 99% for both detecting lines and complete staves. For the music symbol detection, we choose a novel approach that skips the step to identify neumes and instead directly predicts note components (NCs) and their respective affiliation to a neume. Furthermore, the algorithm detects clefs and accidentals. Our algorithm predicts the symbol sequence of a staff with a diplomatic symbol accuracy rate (dSAR) of about 87%, which includes symbol type and location. If only the NCs without their respective connection to a neume, all clefs and accidentals are of interest, the algorithm reaches an harmonic symbol accuracy rate (hSAR) of approximately 90%. In general, the algorithm recognises a symbol in the manuscript with an F 1 -score of over 96%.
Collapse
|
3
|
End-to-End Neural Optical Music Recognition of Monophonic Scores. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8040606] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|