1
|
Ariza ME, Cox B, Martinez B, Mena-Palomo I, Zarate GJ, Williams MV. Viral dUTPases: Modulators of Innate Immunity. Biomolecules 2022; 12:227. [PMID: 35204728 PMCID: PMC8961515 DOI: 10.3390/biom12020227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Most free-living organisms encode for a deoxyuridine triphosphate nucleotidohydrolase (dUTPase; EC 3.6.1.23). dUTPases represent a family of metalloenzymes that catalyze the hydrolysis of dUTP to dUMP and pyrophosphate, preventing dUTP from being incorporated into DNA by DNA polymerases, maintaining a low dUTP/dTTP pool ratio and providing a necessary precursor for dTTP biosynthesis. Thus, dUTPases are involved in maintaining genomic integrity by preventing the uracilation of DNA. Many DNA-containing viruses, which infect mammals also encode for a dUTPase. This review will summarize studies demonstrating that, in addition to their classical enzymatic activity, some dUTPases possess novel functions that modulate the host innate immune response.
Collapse
Affiliation(s)
- Maria Eugenia Ariza
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.C.); (B.M.); (I.M.-P.); (G.J.Z.)
| | - Brandon Cox
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.C.); (B.M.); (I.M.-P.); (G.J.Z.)
| | - Britney Martinez
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.C.); (B.M.); (I.M.-P.); (G.J.Z.)
| | - Irene Mena-Palomo
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.C.); (B.M.); (I.M.-P.); (G.J.Z.)
| | - Gloria Jeronimo Zarate
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.C.); (B.M.); (I.M.-P.); (G.J.Z.)
| | - Marshall Vance Williams
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.C.); (B.M.); (I.M.-P.); (G.J.Z.)
| |
Collapse
|
2
|
Modeling of CCR5 Recognition by HIV-1 gp120: How the Viral Protein Exploits the Conformational Plasticity of the Coreceptor. Viruses 2021; 13:v13071395. [PMID: 34372601 PMCID: PMC8310383 DOI: 10.3390/v13071395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 01/14/2023] Open
Abstract
The chemokine receptor CCR5 is a key player in HIV-1 infection. The cryo-EM 3D structure of HIV-1 envelope glycoprotein (Env) subunit gp120 in complex with CD4 and CCR5 has provided important structural insights into HIV-1/host cell interaction, yet it has not explained the signaling properties of Env nor the fact that CCR5 exists in distinct forms that show distinct Env binding properties. We used classical molecular dynamics and site-directed mutagenesis to characterize the CCR5 conformations stabilized by four gp120s, from laboratory-adapted and primary HIV-1 strains, and which were previously shown to bind differentially to distinct CCR5 forms and to exhibit distinct cellular tropisms. The comparative analysis of the simulated structures reveals that the different gp120s do indeed stabilize CCR5 in different conformational ensembles. They differentially reorient extracellular loops 2 and 3 of CCR5 and thus accessibility to the transmembrane binding cavity. They also reshape this cavity differently and give rise to different positions of intracellular ends of transmembrane helices 5, 6 and 7 of the receptor and of its third intracellular loop, which may in turn influence the G protein binding region differently. These results suggest that the binding of gp120s to CCR5 may have different functional outcomes, which could result in different properties for viruses.
Collapse
|
3
|
Salmas RE, Yurtsever M, Durdagi S. Investigation of Inhibition Mechanism of Chemokine Receptor CCR5 by Micro-second Molecular Dynamics Simulations. Sci Rep 2015; 5:13180. [PMID: 26299310 PMCID: PMC4547396 DOI: 10.1038/srep13180] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 07/15/2015] [Indexed: 12/20/2022] Open
Abstract
Chemokine receptor 5 (CCR5) belongs to G protein coupled receptors (GPCRs) and plays an important role in treatment of human immunodeficiency virus (HIV) infection since HIV uses CCR5 protein as a co-receptor. Recently, the crystal structure of CCR5-bound complex with an approved anti-retroviral drug (maroviroc) was resolved. During the crystallization procedure, amino acid residues (i.e., Cys224, Arg225, Asn226 and Glu227) at the third intra-cellular loop were replaced by the rubredoxin for stability reasons. In the current study, we aimed to understand the impact of the incorporated rubredoxin on the conformations of TM domains of the target protein. For this reason, rubredoxin was deleted from the crystal structure and the missing amino acids were engineered. The resultant structure was subjected to long (μs) molecular dynamics (MD) simulations to shed light into the inhibitory mechanism. The derived model structure displayed a significant deviation in the cytoplasmic domain of TM5 and IC3 in the absence of rubredoxin. The principal component analyses (PCA) and MD trajectory analyses revealed important structural and dynamical differences at apo and holo forms of the CCR5.
Collapse
Affiliation(s)
| | - Mine Yurtsever
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Serdar Durdagi
- Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
4
|
Tamamis P, Floudas CA. Molecular recognition of CCR5 by an HIV-1 gp120 V3 loop. PLoS One 2014; 9:e95767. [PMID: 24763408 PMCID: PMC3999033 DOI: 10.1371/journal.pone.0095767] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/29/2014] [Indexed: 12/04/2022] Open
Abstract
The binding of protein HIV-1 gp120 to coreceptors CCR5 or CXCR4 is a key step of the HIV-1 entry to the host cell, and is predominantly mediated through the V3 loop fragment of HIV-1 gp120. In the present work, we delineate the molecular recognition of chemokine receptor CCR5 by a dual tropic HIV-1 gp120 V3 loop, using a comprehensive set of computational tools predominantly based on molecular dynamics simulations and free energy calculations. We report, what is to our knowledge, the first complete HIV-1 gp120 V3 loop : CCR5 complex structure, which includes the whole V3 loop and the N-terminus of CCR5, and exhibits exceptional agreement with previous experimental findings. The computationally derived structure sheds light into the functional role of HIV-1 gp120 V3 loop and CCR5 residues associated with the HIV-1 coreceptor activity, and provides insights into the HIV-1 coreceptor selectivity and the blocking mechanism of HIV-1 gp120 by maraviroc. By comparing the binding of the specific dual tropic HIV-1 gp120 V3 loop with CCR5 and CXCR4, we observe that the HIV-1 gp120 V3 loop residues 13-21, which include the tip, share nearly identical structural and energetic properties in complex with both coreceptors. This result paves the way for the design of dual CCR5/CXCR4 targeted peptides as novel potential anti-AIDS therapeutics.
Collapse
Affiliation(s)
- Phanourios Tamamis
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Christodoulos A. Floudas
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
5
|
Molecular recognition of CXCR4 by a dual tropic HIV-1 gp120 V3 loop. Biophys J 2014; 105:1502-14. [PMID: 24048002 DOI: 10.1016/j.bpj.2013.07.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/16/2013] [Accepted: 07/29/2013] [Indexed: 01/01/2023] Open
Abstract
HIV-1 cell entry is initiated by the interaction of the viral envelope glycoprotein gp120 with CD4, and chemokine coreceptors CXCR4 and CCR5. The molecular recognition of CXCR4 or CCR5 by the HIV-1 gp120 is mediated through the V3 loop, a fragment of gp120. The binding of the V3 loop to CXCR4 or CCR5 determines the cell tropism of HIV-1 and constitutes a key step before HIV-1 cell entry. Thus, elucidating the molecular recognition of CXCR4 by the V3 loop is important for understanding HIV-1 viral infectivity and tropism, and for the design of HIV-1 inhibitors. We employed a comprehensive set of computational tools, predominantly based on free energy calculations and molecular-dynamics simulations, to investigate the molecular recognition of CXCR4 by a dual tropic V3 loop. We report what is, to our knowledge, the first HIV-1 gp120 V3 loop:CXCR4 complex structure. The computationally derived structure reveals an abundance of polar and nonpolar intermolecular interactions contributing to the HIV-1 gp120:CXCR4 binding. Our results are in remarkable agreement with previous experimental findings. Therefore, this work sheds light on the functional role of HIV-1 gp120 V3 loop and CXCR4 residues associated with HIV-1 coreceptor activity.
Collapse
|
6
|
HIV-1 tropism testing and clinical management of CCR5 antagonists: Quebec review and recommendations. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2014; 24:202-8. [PMID: 24489562 DOI: 10.1155/2013/982759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HIV-1 tropism assays play a crucial role in determining the response to CCR5 receptor antagonists. Initially, phenotypic tests were used, but limited access to these tests prompted the development of alternative strategies. Recently, genotyping tropism has been validated using a Canadian technology in clinical trials investigating the use of maraviroc in both experienced and treatment-naive patients. The present guidelines review the evidence supporting the use of genotypic assays and provide recommendations regarding tropism testing in daily clinical management.
Collapse
|
7
|
López de Victoria A, Tamamis P, Kieslich CA, Morikis D. Insights into the structure, correlated motions, and electrostatic properties of two HIV-1 gp120 V3 loops. PLoS One 2012; 7:e49925. [PMID: 23185486 PMCID: PMC3501474 DOI: 10.1371/journal.pone.0049925] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/15/2012] [Indexed: 12/11/2022] Open
Abstract
The V3 loop of the glycoprotein 120 (gp120) is a contact point for cell entry of HIV-1 leading to infection. Despite sequence variability and lack of specific structure, the highly flexible V3 loop possesses a well-defined role in recognizing and selecting cell-bound coreceptors CCR5 and CXCR4 through a mechanism of charge complementarity. We have performed two independent molecular dynamics (MD) simulations to gain insights into the dynamic character of two V3 loops with slightly different sequences, but significantly different starting crystallographic structures. We have identified highly populated trajectory-specific salt bridges between oppositely charged stem residues Arg9 and Glu25 or Asp29. The two trajectories share nearly identical correlated motions within the simulations, despite their different overall structures. High occupancy salt bridges play a key role in the major cross-correlated motions in both trajectories, and may be responsible for transient structural stability in preparation for coreceptor binding. In addition, the two V3 loops visit conformations with similarities in spatial distributions of electrostatic potentials, despite their inherent flexibility, which may play a role in coreceptor recognition. It is plausible that cooperativity between overall electrostatic potential, charged residue interactions, and correlated motions could be associated with a coreceptor selection and binding.
Collapse
Affiliation(s)
- Aliana López de Victoria
- Department of Bioengineering, University of California Riverside, Riverside, California, United States of America
| | - Phanourios Tamamis
- Department of Bioengineering, University of California Riverside, Riverside, California, United States of America
| | - Chris A. Kieslich
- Department of Bioengineering, University of California Riverside, Riverside, California, United States of America
| | - Dimitrios Morikis
- Department of Bioengineering, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
8
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
9
|
Immunization with wild-type or CD4-binding-defective HIV-1 Env trimers reduces viremia equivalently following heterologous challenge with simian-human immunodeficiency virus. J Virol 2010; 84:9086-95. [PMID: 20610729 DOI: 10.1128/jvi.01015-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently reported that rhesus macaques inoculated with CD4-binding-competent and CD4-binding-defective soluble YU2-derived HIV-1 envelope glycoprotein (Env) trimers in adjuvant generate comparable levels of Env-specific binding antibodies (Abs) and T cell responses. We also showed that Abs directed against the Env coreceptor binding site (CoRbs) were elicited only in animals immunized with CD4-binding-competent trimers and not in animals immunized with CD4-binding-defective trimers, indicating that a direct interaction between Env and CD4 occurs in vivo. To investigate both the overall consequences of in vivo Env-CD4 interactions and the elicitation of CoRbs-directed Abs for protection against heterologous simian-human immunodeficiency virus (SHIV) challenge, we exposed rhesus macaques immunized with CD4-binding-competent and CD4-binding-defective trimers to the CCR5-tropic SHIV-SF162P4 challenge virus. Compared to unvaccinated controls, all vaccinated animals displayed improved control of plasma viremia, independent of the presence or absence of CoRbs-directed Abs prior to challenge. Immunization resulted in plasma responses that neutralized the heterologous SHIV challenge stock in vitro, with similar neutralizing Ab titers elicited by the CD4-binding-competent and CD4-binding-defective trimers. The neutralizing responses against both the SHIV-SF162P4 stock and a recombinant virus pseudotyped with a cloned SHIV-SF162P4-derived Env were significantly boosted by the SHIV challenge. Collectively, these results suggest that the capacity of soluble Env trimers to interact with primate CD4 in vivo and to stimulate the production of moderate titers of CoRbs-directed Abs did not influence the magnitude of the neutralizing Ab recall response after viral challenge or the subsequent control of viremia in this heterologous SHIV challenge model.
Collapse
|
10
|
Structure-function analysis of human immunodeficiency virus type 1 gp120 amino acid mutations associated with resistance to the CCR5 coreceptor antagonist vicriviroc. J Virol 2009; 83:12151-63. [PMID: 19776131 DOI: 10.1128/jvi.01351-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vicriviroc (VCV) is a small-molecule CCR5 coreceptor antagonist currently in clinical trials for treatment of R5-tropic human immunodeficiency virus type 1 (HIV-1) infection. With this drug in development, identification of resistance mechanisms to VCV is needed to allow optimal outcomes in clinical practice. In this study we further characterized VCV resistance in a lab-adapted, VCV-resistant RU570 virus (RU570-VCV(res)). We show that K305R, R315Q, and K319T amino acid changes in the V3 loop, along with P437S in C4, completely reproduced the resistance phenotype in a chimeric ADA envelope containing the C2-V5 region from RU570 passage control gp120. The K305R amino acid change primarily impacted the degree of resistance, whereas K319T contributed to both resistance and virus infectivity. The P437S mutation in C4 had more influence on the relative degree of virus infectivity, while the R315Q mutation contributed to the virus concentration-dependent phenotypic resistance pattern observed for RU570-VCV(res). RU570-VCV(res) pseudovirus entry with VCV-bound CCR5 was dramatically reduced by Y10A, D11A, Y14A, and Y15A mutations in the N terminus of CCR5, whereas these mutations had less impact on entry in the absence of VCV. Notably, an additional Q315E/I317F substitution in the crown region of the V3 loop enhanced resistance to VCV, resulting in a stronger dependence on the N terminus for viral entry. By fitting the envelope mutations to a molecular model of a recently described docked N-terminal CCR5 peptide consisting of residues 2 to 15 in complex with HIV-1 gp120 CD4, potential new interactions in gp120 with the N terminus of CCR5 were uncovered. The cumulative results of this study suggest that as the RU570 VCV-resistant virus adapted to use the drug-bound receptor, it also developed an increased reliance on the N terminus of CCR5.
Collapse
|
11
|
Galanakis PA, Kandias NG, Rizos AK, Morikis D, Krambovitis E, Spyroulias GA. NMR evidence of charge-dependent interaction between various PND V3 and CCR5 N-terminal peptides. Biopolymers 2009; 92:94-109. [PMID: 19117029 DOI: 10.1002/bip.21127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The third variable (V3) loop is an important region of glycoprotein 120 (gp120) for many biological processes, as it contains the highly conserved GPGR sequence and it represents the binding site for human immunodeficiency virus 1 (HIV-1) antibodies and for CCR5 and CXCR4 host cell coreceptors. The interaction of the principal neutralizing determinant (PND) V3 with the chemokine receptor CCR5 N-terminal region has been reported to be crucial for HIV-1 infection. The goal of this study is to characterize the solution structures of three HIV-1 gp120 V3 subtype B peptides and their interaction with a nonsulfated N-terminal CCR5 peptide. NMR titration experiments revealed that the CCR5Nt-PND V3 interaction is dependent on the number of the positively charged V3 residues, which is in agreement with the observation that increase in positive charge in the V3 sequence correlates with the augmentation of the interaction. As expected for free peptides in solution, the peptides representing the PND V3 region of gp120 exhibit conformational flexibility, but they also exhibit a large number of NOEs which allowed convergence to a dominant conformation. The PND V3 peptides retain the U-turn conformation observed in the crystal structures of gp120 complexes independently of CCR5 presence. The interaction of different regions of the CCR5Nt peptide is gradually increasing proportionally to the positive charge increase in the V3 peptides. The data demonstrate that the PND V3 and CCR5Nt peptide sequences have propensities for interaction even in the absence of sulfated tyrosines and that their binding and selectivity is determined by simple electrostatic attraction mechanisms.
Collapse
Affiliation(s)
- Petros A Galanakis
- Department of Pharmacy, University of Patras, Panepistimioupoli-Rion, Patras, Greece
| | | | | | | | | | | |
Collapse
|
12
|
Dubey S, Khalid M, Wesley C, Khan SA, Wanchu A, Jameel S. Downregulation of CCR5 on activated CD4 T cells in HIV-infected Indians. J Clin Virol 2008; 43:25-31. [PMID: 18462992 DOI: 10.1016/j.jcv.2008.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 02/15/2008] [Accepted: 03/27/2008] [Indexed: 01/23/2023]
Abstract
BACKGROUND HIV infection in India is unique as it occurs predominantly by CCR5-utilizing isolates that exhibit no co-receptor switch. OBJECTIVES To study HIV-1 co-receptor dynamics on T cells and monocytes following viral infection. STUDY DESIGN HIV co-receptor expression was evaluated by flow cytometry on various cell subsets in HIV-infected Indians and in vitro in human peripheral blood mononuclear cells infected with CCR5- or CXCR4-utilizing HIV-1. Transfection of the T cell line CEM-CCR5 (which expresses CD4, CCR5 and CXCR4) with HIV-1 Nef or Vpu expression vectors, or treatment with recombinant soluble gp120 from CCR5- and CXCR4-tropic HIV-1, was carried out to determine their effects on co-receptor expression. RESULTS Indian HIV patients had fewer CD4+CCR5+ T cells and CCR5-expressing activated CD4+ T cells, but higher CXCR4-expressing activated CD4+ T cells compared with controls. Expression of CCR5 was not different on monocytes in HIV patients as compared to controls. The CCR5 downregulation on T cells was HIV infection specific and was governed by the co-receptor-utilization phenotype of the virus. The Nef and soluble gp120 proteins induced CCR5 downregulation, the latter in a co-receptor-utilization phenotype specific manner. CONCLUSIONS The HIV-1 co-receptor dynamics in Indian patients is distinct from western patients and depends upon the virus surface protein. We propose this to be a viral survival strategy.
Collapse
Affiliation(s)
- Shweta Dubey
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
13
|
Ogert RA, Wojcik L, Buontempo C, Ba L, Buontempo P, Ralston R, Strizki J, Howe JA. Mapping resistance to the CCR5 co-receptor antagonist vicriviroc using heterologous chimeric HIV-1 envelope genes reveals key determinants in the C2-V5 domain of gp120. Virology 2008; 373:387-99. [PMID: 18190945 DOI: 10.1016/j.virol.2007.12.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/27/2007] [Accepted: 12/07/2007] [Indexed: 11/18/2022]
Abstract
Several small molecule drugs that bind to the host CCR5 co-receptor and prevent viral entry have been developed for the treatment of HIV-1 infection. The innate variability found in HIV-1 envelope and the complex viral/cellular interactions during entry makes defining resistance to these inhibitors challenging. Here we found that mapping determinants in the gp160 gene from a primary isolate RU570-VCV(res), selected in culture for resistance to the CCR5 entry inhibitor vicriviroc, was complicated by inactivity of the cloned envelope gene in pseudovirus assays. We therefore recombined the envelope from RU570-VCV(res) into a highly active and susceptible ADA gp160 backbone. The chimeric envelopes generated robust signals in the pseudovirus assay and a 200 amino acid fragment, encompassing a C2-V5 region of the RU570-VCV(res) envelope, was required to confer resistance in both the single-cycle assay and in replicating virus. In contrast, a chimeric envelope that contained only the V3-loop region from this resistant virus was completely susceptible suggesting that the V3-loop changes acquired are context dependent.
Collapse
Affiliation(s)
- Robert A Ogert
- Schering-Plough Research Institute, Department of Biological Sciences-VIROLOGY, K-15-4945, Kenilworth, NJ 07033, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Effects of partial deletions within the human immunodeficiency virus type 1 V3 loop on coreceptor tropism and sensitivity to entry inhibitors. J Virol 2007; 82:664-73. [PMID: 17977968 DOI: 10.1128/jvi.01793-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) V3 loop is critical for coreceptor binding and principally determines tropism for the CCR5 and CXCR4 coreceptors. The recent crystallographic resolution of V3 shows that its base is closely associated with the conserved coreceptor binding site on the gp120 core, whereas more distal regions protrude toward the cell surface, likely mediating interactions with coreceptor extracellular loops. However, these V3-coreceptor interactions and the structural basis for CCR5 or CXCR4 specificity are poorly understood. Using the dual-tropic virus HIV-1(R3A), which uses both CCR5 and CXCR4, we sought to identify subdomains within V3 that selectively mediate R5 or X4 tropism. An extensive panel of V3 mutants was evaluated for effects on tropism and sensitivity to coreceptor antagonists. Mutations on either side of the V3 base (residues 3 to 8 and 26 to 33) ablated R5 tropism and made the resulting X4-tropic Envs more sensitive to the CXCR4 inhibitor AMD3100. When mutations were introduced within the V3 stem, only a deletion of residues 9 to 12 on the N-terminal side ablated X4 tropism. Remarkably, this R5-tropic Delta9-12 mutant was completely resistant to several small-molecule inhibitors of CCR5. Envs with mutations in the V3 crown (residues 13 to 20) remained dual tropic. Similar observations were made for a second dual-tropic isolate, HIV-1(89.6). These findings suggest that V3 subdomains can be identified that differentially affect R5 and X4 tropism and modulate sensitivity to CCR5 and CXCR4 inhibitors. These studies provide a novel approach for probing V3-coreceptor interactions and mechanisms by which these interactions can be inhibited.
Collapse
|