1
|
Roterman I, Stapor K, Dułak D, Konieczny L. External Force Field for Protein Folding in Chaperonins-Potential Application in In Silico Protein Folding. ACS OMEGA 2024; 9:18412-18428. [PMID: 38680295 PMCID: PMC11044213 DOI: 10.1021/acsomega.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
The present study discusses the influence of the TRiC chaperonin involved in the folding of the component of reovirus mu1/σ3. The TRiC chaperone is treated as a provider of a specific external force field in the fuzzy oil drop model during the structural formation of a target folded protein. The model also determines the status of the final product, which represents the structure directed by an external force field in the form of a chaperonin. This can be used for in silico folding as the process is environment-dependent. The application of the model enables the quantitative assessment of the folding dependence of an external force field, which appears to have universal application.
Collapse
Affiliation(s)
- Irena Roterman
- Department
of Bioinformatics and Telemedicine, Jagiellonian
University—Medical College, Medyczna 7, Kraków 30-688, Poland
| | - Katarzyna Stapor
- Faculty
of Automatic, Electronics and Computer Science, Department of Applied
Informatics, Silesian University of Technology, Akademicka 16, Gliwice 44-100, Poland
| | - Dawid Dułak
- ABB
Business Services Sp. z o.o, ul Żegańska 1, Warszawa 04-713, Poland
| | - Leszek Konieczny
- Chair
of Medical Biochemistry—Jagiellonian University—Medical
College, Kopernika 7, Kraków 31-034, Poland
| |
Collapse
|
2
|
Ge Y, Luo Q, Liu L, Shi Q, Zhang Z, Yue X, Tang L, Liang L, Hu J, Ouyang W. S288T mutation altering MmpL3 periplasmic domain channel and H-bond network: a novel dual drug resistance mechanism. J Mol Model 2024; 30:39. [PMID: 38224406 DOI: 10.1007/s00894-023-05814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
CONTEXT Mycobacterial membrane proteins Large 3 (MmpL3) is responsible for the transport of mycobacterial acids out of cell membrane to form cell wall, which is essential for the survival of Mycobacterium tuberculosis (Mtb) and has become a potent anti-tuberculosis target. SQ109 is an ethambutol (EMB) analogue, as a novel anti-tuberculosis drug, can effectively inhibit MmpL3, and has completed phase 2b-3 clinical trials. Drug resistance has always been the bottleneck problem in clinical treatment of tuberculosis. The S288T mutant of MmpL3 shows significant resistance to the inhibitor SQ109, while the specific action mechanism remains unclear. The results show that MmpL3 S288T mutation causes local conformational change with little effect on the global structure. With MmpL3 bound by SQ109 inhibitor, the distance between D710 and R715 increases resulting in H-bond destruction, but their interactions and proton transfer function are still restored. In addition, the rotation of Y44 in the S288T mutant leads to an obvious bend in the periplasmic domain channel and an increased number of contact residues, reducing substrate transport efficiency. This work not only provides a possible dual drug resistance mechanism of MmpL3 S288T mutant but also aids the development of novel anti-tuberculosis inhibitors. METHODS In this work, molecular dynamics (MD) and quantum mechanics (QM) simulations both were performed to compare inhibitor (i.e., SQ109) recognition, motion characteristics, and H-bond energy change of MmpL3 after S288T mutation. In addition, the WT_SQ109 complex structure was obtained by molecular docking program (Autodock 4.2); Molecular Mechanics/ Poisson Boltzmann Surface Area (MM-PBSA) and Solvated Interaction Energy (SIE) methods were used to calculate the binding free energies (∆Gbind); Geometric criteria were used to analyze the changes of hydrogen bond networks.
Collapse
Affiliation(s)
- Yutong Ge
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Qing Luo
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Ling Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Quanshan Shi
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Zhigang Zhang
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
| | - Xinru Yue
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Lingkai Tang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Weiwei Ouyang
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
3
|
Application of Divergence Entropy to Characterize the Structure of the Hydrophobic Core in DNA Interacting Proteins. ENTROPY 2015. [DOI: 10.3390/e17031477] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Kalinowska B, Banach M, Konieczny L, Marchewka D, Roterman I. Intrinsically disordered proteins--relation to general model expressing the active role of the water environment. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 94:315-46. [PMID: 24629190 DOI: 10.1016/b978-0-12-800168-4.00008-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This work discusses the role of unstructured polypeptide chain fragments in shaping the protein's hydrophobic core. Based on the "fuzzy oil drop" model, which assumes an idealized distribution of hydrophobicity density described by the 3D Gaussian, we can determine which fragments make up the core and pinpoint residues whose location conflicts with theoretical predictions. We show that the structural influence of the water environment determines the positions of disordered fragments, leading to the formation of a hydrophobic core overlaid by a hydrophilic mantle. This phenomenon is further described by studying selected proteins which are known to be unstable and contain intrinsically disordered fragments. Their properties are established quantitatively, explaining the causative relation between the protein's structure and function and facilitating further comparative analyses of various structural models.
Collapse
Affiliation(s)
- Barbara Kalinowska
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Krakow, Poland; Faculty of Physics, Astronomy and Applied Computer Science - Jagiellonian University, Krakow, Poland
| | - Mateusz Banach
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Krakow, Poland; Faculty of Physics, Astronomy and Applied Computer Science - Jagiellonian University, Krakow, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Krakow, Poland
| | - Damian Marchewka
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Krakow, Poland; Faculty of Physics, Astronomy and Applied Computer Science - Jagiellonian University, Krakow, Poland
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
5
|
Brylinski M, Feinstein WP. eFindSite: improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands. J Comput Aided Mol Des 2013; 27:551-67. [PMID: 23838840 DOI: 10.1007/s10822-013-9663-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 07/01/2013] [Indexed: 02/02/2023]
Abstract
Molecular structures and functions of the majority of proteins across different species are yet to be identified. Much needed functional annotation of these gene products often benefits from the knowledge of protein-ligand interactions. Towards this goal, we developed eFindSite, an improved version of FINDSITE, designed to more efficiently identify ligand binding sites and residues using only weakly homologous templates. It employs a collection of effective algorithms, including highly sensitive meta-threading approaches, improved clustering techniques, advanced machine learning methods and reliable confidence estimation systems. Depending on the quality of target protein structures, eFindSite outperforms geometric pocket detection algorithms by 15-40 % in binding site detection and by 5-35 % in binding residue prediction. Moreover, compared to FINDSITE, it identifies 14 % more binding residues in the most difficult cases. When multiple putative binding pockets are identified, the ranking accuracy is 75-78 %, which can be further improved by 3-4 % by including auxiliary information on binding ligands extracted from biomedical literature. As a first across-genome application, we describe structure modeling and binding site prediction for the entire proteome of Escherichia coli. Carefully calibrated confidence estimates strongly indicate that highly reliable ligand binding predictions are made for the majority of gene products, thus eFindSite holds a significant promise for large-scale genome annotation and drug development projects. eFindSite is freely available to the academic community at http://www.brylinski.org/efindsite .
Collapse
Affiliation(s)
- Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
6
|
Kochańczyk M. Prediction of functionally important residues in globular proteins from unusual central distances of amino acids. BMC STRUCTURAL BIOLOGY 2011; 11:34. [PMID: 21923943 PMCID: PMC3188475 DOI: 10.1186/1472-6807-11-34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 09/18/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Well-performing automated protein function recognition approaches usually comprise several complementary techniques. Beside constructing better consensus, their predictive power can be improved by either adding or refining independent modules that explore orthogonal features of proteins. In this work, we demonstrated how the exploration of global atomic distributions can be used to indicate functionally important residues. RESULTS Using a set of carefully selected globular proteins, we parametrized continuous probability density functions describing preferred central distances of individual protein atoms. Relative preferred burials were estimated using mixture models of radial density functions dependent on the amino acid composition of a protein under consideration. The unexpectedness of extraordinary locations of atoms was evaluated in the information-theoretic manner and used directly for the identification of key amino acids. In the validation study, we tested capabilities of a tool built upon our approach, called SurpResi, by searching for binding sites interacting with ligands. The tool indicated multiple candidate sites achieving success rates comparable to several geometric methods. We also showed that the unexpectedness is a property of regions involved in protein-protein interactions, and thus can be used for the ranking of protein docking predictions. The computational approach implemented in this work is freely available via a Web interface at http://www.bioinformatics.org/surpresi. CONCLUSIONS Probabilistic analysis of atomic central distances in globular proteins is capable of capturing distinct orientational preferences of amino acids as resulting from different sizes, charges and hydrophobic characters of their side chains. When idealized spatial preferences can be inferred from the sole amino acid composition of a protein, residues located in hydrophobically unfavorable environments can be easily detected. Such residues turn out to be often directly involved in binding ligands or interfacing with other proteins.
Collapse
Affiliation(s)
- Marek Kochańczyk
- Faculty of Physics, Jagiellonian University, ul, Reymonta 4, 30-059 Krakow, Poland.
| |
Collapse
|
7
|
Roterman I, Konieczny L, Banach M, Jurkowski W. Intermediates in the protein folding process: a computational model. Int J Mol Sci 2011; 12:4850-60. [PMID: 21954329 PMCID: PMC3179136 DOI: 10.3390/ijms11084850] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/07/2011] [Accepted: 07/25/2011] [Indexed: 11/25/2022] Open
Abstract
The paper presents a model for simulating the protein folding process in silico. The two-step model (which consists of the early stage—ES and the late stage—LS) is verified using two proteins, one of which is treated (according to experimental observations) as the early stage and the second as an example of the LS step. The early stage is based solely on backbone structural preferences, while the LS model takes into account the water environment, treated as an external hydrophobic force field and represented by a 3D Gauss function. The characteristics of 1ZTR (the ES intermediate, as compared with 1ENH, which is the LS intermediate) confirm the link between the gradual disappearance of ES characteristics in LS structural forms and the simultaneous emergence of LS properties in the 1ENH protein. Positive verification of ES and LS characteristics in these two proteins (1ZTR and 1ENH respectively) suggest potential applicability of the presented model to in silico protein folding simulations.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Lazarza 16, 31-530 Krakow, Poland; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +48-12-619-96-94; Fax: +48-12-619-96-93
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Kopernika 7, 31-034 Krakow, Poland; E-Mail:
| | - Mateusz Banach
- Faculty of Physics, Astronomy, Applied Computer Science, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland; E-Mail:
| | - Wiktor Jurkowski
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Lazarza 16, 31-530 Krakow, Poland; E-Mail:
| |
Collapse
|
8
|
Roterman I, Konieczny L, Jurkowski W, Prymula K, Banach M. Two-intermediate model to characterize the structure of fast-folding proteins. J Theor Biol 2011; 283:60-70. [PMID: 21635900 DOI: 10.1016/j.jtbi.2011.05.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 01/15/2023]
Abstract
This paper introduces a new model that enables researchers to conduct protein folding simulations. A two-step in silico process is used in the course of structural analysis of a set of fast-folding proteins. The model assumes an early stage (ES) that depends solely on the backbone conformation, as described by its geometrical properties--specifically, by the V-angle between two sequential peptide bond planes (which determines the radius of curvature, also called R-radius, according to a second-degree polynomial form). The agreement between the structure under consideration and the assumed model is measured in terms of the magnitude of dispersion of both parameters with respect to idealized values. The second step, called late-stage folding (LS), is based on the "fuzzy oil drop" model, which involves an external hydrophobic force field described by a three-dimensional Gauss function. The degree of conformance between the structure under consideration and its idealized model is expressed quantitatively by means of the Kullback-Leibler entropy, which is a measure of disparity between the observed and expected hydrophobicity distributions. A set of proteins, representative of the fast-folding group - specifically, cold shock proteins - is shown to agree with the proposed model.
Collapse
Affiliation(s)
- I Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Lazarza 16, 31-530 Krakow, Poland.
| | | | | | | | | |
Collapse
|
9
|
Structural bioinformatics: deriving biological insights from protein structures. Interdiscip Sci 2010; 2:347-66. [PMID: 21153779 DOI: 10.1007/s12539-010-0045-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 12/27/2022]
Abstract
Structural bioinformatics can be described as an approach that will help decipher biological insights from protein structures. As an important component of structural biology, this area promises to provide a high resolution understanding of biology by assisting comprehension and interpretation of a large amount of structural data. Biological function of protein molecules can be inferred from their three-dimensional structures by comparing structures, classifying them and transferring function from a related protein or family. It is well known now that the structure space of protein molecules is more conserved than the sequence space, making it important to seek functional associations at the structural level. An added advantage of structural bioinformatics over simpler sequence-based methods is that the former also provides ultimate insights into the mechanisms by which various biological events take place. A bird's eye-view of the different aspects of structural bioinformatics is given here along with various recent advances in the area including how knowledge obtained from structural bioinformatics can be applied in drug discovery.
Collapse
|
10
|
Abstract
M-ORBIS is a Molecular Cartography approach that performs integrative high-throughput analysis of structural data to localize all types of binding sites and associated partners by homology and to characterize their properties and behaviors in a systemic way. The robustness of our binding site inferences was compared to four curated datasets corresponding to protein heterodimers and homodimers and protein–DNA/RNA assemblies. The Molecular Cartographies of structurally well-detailed proteins shows that 44% of their surfaces interact with non-solvent partners. Residue contact frequencies with water suggest that ∼86% of their surfaces are transiently solvated, whereas only 15% are specifically solvated. Our analysis also reveals the existence of two major binding site families: specific binding sites which can only bind one type of molecule (protein, DNA, RNA, etc.) and polyvalent binding sites that can bind several distinct types of molecule. Specific homodimer binding sites are for instance nearly twice as hydrophobic than previously described and more closely resemble the protein core, while polyvalent binding sites able to form homo and heterodimers more closely resemble the surfaces involved in crystal packing. Similarly, the regions able to bind DNA and to alternatively form homodimers, are more hydrophobic and less polar than previously described DNA binding sites.
Collapse
|
11
|
Prymula K, Sałapa K, Roterman I. "Fuzzy oil drop" model applied to individual small proteins built of 70 amino acids. J Mol Model 2010; 16:1269-82. [PMID: 20084418 DOI: 10.1007/s00894-009-0639-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 12/07/2009] [Indexed: 12/25/2022]
Abstract
The proteins composed of short polypeptides (about 70 amino acid residues) representing the following functional groups (according to PDB notation): growth hormones, serine protease inhibitors, antifreeze proteins, chaperones and proteins of unknown function, were selected for structural and functional analysis. Classification based on the distribution of hydrophobicity in terms of deficiency/excess as the measure of structural and functional specificity is presented. The experimentally observed distribution of hydrophobicity in the protein body is compared to the idealized one expressed by a three-dimensional Gauss function. The differences between these two distributions reveal the specificity of structural/functional characteristics of the protein. The residues of hydrophobicity deficiency versus the idealized distribution are assumed to indicate cavities with the potential to bind ligands, while the residues of hydrophobicity excess are interpreted as potentially participating in protein-protein complexation. The distribution of hydrophobicity irregularity seems to be specific for particular structures and functions of proteins. A comparative analysis of such profiles is carried out to identify the potential biological activity of proteins of unknown function.
Collapse
Affiliation(s)
- Katarzyna Prymula
- Department of Bioinformatics, Telemedicine Jagiellonian University - Collegium Medicum, Lazarza 16, 31-530, Krakow, Poland
| | | | | |
Collapse
|
12
|
Prymula K, Piwowar M, Kochanczyk M, Flis L, Malawski M, Szepieniec T, Evangelista G, Minervini G, Polticelli F, WisÌniowski Z, SaÅapa K, MatczynÌska E, Roterman I. In silico Structural Study of Random Amino Acid Sequence Proteins Not Present in Nature. Chem Biodivers 2009; 6:2311-36. [DOI: 10.1002/cbdv.200800338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Zobnina V, Roterman I. Application of the fuzzy-oil-drop model to membrane protein simulation. Proteins 2009; 77:378-94. [PMID: 19455711 DOI: 10.1002/prot.22443] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The analysis of structural properties and biological activity of membrane proteins requires long lasting simulation of molecular dynamics. The large number of atoms present in protein molecule, membrane (phospholipids), and water environment makes the simulation of large scale. The implementation of simplified model representing the natural environment for membrane proteins is presented and compared with the vacuum simulation and simulation in the presence of water molecules and membrane phospholipids presented explicite. The comparative structural analysis and computational times for these three models makes the simplified model promising.
Collapse
Affiliation(s)
- Veronica Zobnina
- Department of Bioinformatics and Telemedicine, Collegium Medicum-Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
14
|
Prymula K, Roterman I. Functional Characteristics of Small Proteins (70 Amino Acid Residues) Forming Protein-Nucleic Acid Complexes. J Biomol Struct Dyn 2009; 26:663-77. [DOI: 10.1080/07391102.2009.10507280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Banach M, Stąpor K, Roterman I. Chaperonin structure: the large multi-subunit protein complex. Int J Mol Sci 2009; 10:844-861. [PMID: 19399224 PMCID: PMC2672005 DOI: 10.3390/ijms10030844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 02/23/2009] [Accepted: 02/26/2009] [Indexed: 11/16/2022] Open
Abstract
The multi sub-unit protein structure representing the chaperonins group is analyzed with respect to its hydrophobicity distribution. The proteins of this group assist protein folding supported by ATP. The specific axial symmetry GroEL structure (two rings of seven units stacked back to back - 524 aa each) and the GroES (single ring of seven units - 97 aa each) polypeptide chains are analyzed using the hydrophobicity distribution expressed as excess/deficiency all over the molecule to search for structure-to-function relationships. The empirically observed distribution of hydrophobic residues is confronted with the theoretical one representing the idealized hydrophobic core with hydrophilic residues exposure on the surface. The observed discrepancy between these two distributions seems to be aim-oriented, determining the structure-to-function relation. The hydrophobic force field structure generated by the chaperonin capsule is presented. Its possible influence on substrate folding is suggested.
Collapse
Affiliation(s)
- Mateusz Banach
- Department of Bioinformatics and Telemedicine – Jagiellonian University, Collegium Medicum, Lazarza 16, 31-531 Krakow, Poland; E-Mail:
- Faculty of Physics, Astronomy and Applied Computer Science - Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland; E-Mail:
| | - Katarzyna Stąpor
- Faculty of Physics, Astronomy and Applied Computer Science - Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland; E-Mail:
- Silesian Technical University, Institute of Computer Science, Akademicka 16 44-100 Gliwice, Poland; E-Mail:
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine – Jagiellonian University, Collegium Medicum, Lazarza 16, 31-531 Krakow, Poland; E-Mail:
- Faculty of Physics, Astronomy and Applied Computer Science - Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland; E-Mail:
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +48-12-619-96-94; Fax: +48-12-619-96-93
| |
Collapse
|