1
|
Gerland L, Diehl A, Erdmann N, Hiller M, Lang C, Teutloff C, Hughes J, Oschkinat H. Changes in Secondary Structure Upon Pr to Pfr Transition in Cyanobacterial Phytochrome Cph1 Detected by DNP NMR. Chemistry 2025; 31:e202402454. [PMID: 39541567 DOI: 10.1002/chem.202402454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Phytochromes perceive subtle changes in the light environment and convert them into biological signals by photoconversion between the red-light absorbing (Pr) and the far-red-absorbing (Pfr) states. In the primitive bacteriophytochromes this includes refolding of a tongue-like hairpin loop close to the chromophore, one strand of an antiparallel β-sheet being replaced by an α-helix. However, the strand sequence in the cyanobacterial phytochrome Cph1 is different from that of previously investigated bacteriophytochromes and has a higher β-sheet propensity. We confirm here the transition experimentally and estimate minimum helix length using dynamic nuclear polarisation (DNP) magic angle spinning NMR. Sample conditions were optimized for protein DNP NMR studies at high field, yielding Boltzmann enhancements ϵB of 19 at an NMR field of 18.801 T. Selective labelling of Trp, Ile, Arg, and Val residues with 13C and 15N enabled filtering for pairs of labelled amino acids by the 3D CANCOCA technique to identify signals of the motif 483Ile-Val-Arg485 (IVR) present in both sheet and helix. Those signals were assigned for the Pfr state of the protein. Based on the chemical shift pattern, we confirm for Cph1 the formation of a helix covering the IVR motif.
Collapse
Affiliation(s)
- Lisa Gerland
- NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Anne Diehl
- NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Natalja Erdmann
- NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Matthias Hiller
- NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Christina Lang
- Plant Physiology, Faculty of Biology and Chemistry, Justus-Liebig-University Giessen, Senckenbergstr. 3, 35390, Giessen, Germany
| | - Christian Teutloff
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Jon Hughes
- Plant Physiology, Faculty of Biology and Chemistry, Justus-Liebig-University Giessen, Senckenbergstr. 3, 35390, Giessen, Germany
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Hartmut Oschkinat
- NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| |
Collapse
|
2
|
Hu G, Moon J, Hayashi T. Protein Classes Predicted by Molecular Surface Chemical Features: Machine Learning-Assisted Classification of Cytosol and Secreted Proteins. J Phys Chem B 2024; 128:8423-8436. [PMID: 39185763 PMCID: PMC11382266 DOI: 10.1021/acs.jpcb.4c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Chemical structures of protein surfaces govern intermolecular interaction, and protein functions include specific molecular recognition, transport, self-assembly, etc. Therefore, the relationship between the chemical structure and protein functions provides insights into the understanding of the mechanism underlying protein functions and developments of new biomaterials. In this study, we analyze protein surface features, including surface amino acid populations and secondary structure ratios, instead of entire sequences as input for the classifier, intending to provide deeper insights into the determination of protein classes (cytosol or secreted). We employed a random forest-based classifier for the prediction of protein locations. Our training and testing data sets consisting of secreted and cytosol proteins were constructed using filtered information from UniProt and 3D structures from AlphaFold. The classifier achieved a testing accuracy of 93.9% with a feature importance ranking and quantitative boundary values for the top three features. We discuss the significance of these features quantitatively and the hidden rules to determine the protein classes (cytosol or secreted).
Collapse
Affiliation(s)
- Guanghao Hu
- Department of Materials Science and Engineering, School of Materials Science and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa-ken 226-8502, Japan
| | - Jooa Moon
- Department of Materials Science and Engineering, School of Materials Science and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa-ken 226-8502, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials Science and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa-ken 226-8502, Japan
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| |
Collapse
|
3
|
Mance L, Bigot N, Zhamungui Sánchez E, Coste F, Martín-González N, Zentout S, Biliškov M, Pukało Z, Mishra A, Chapuis C, Arteni AA, Lateur A, Goffinont S, Gaudon V, Talhaoui I, Casuso I, Beaufour M, Garnier N, Artzner F, Cadene M, Huet S, Castaing B, Suskiewicz MJ. Dynamic BTB-domain filaments promote clustering of ZBTB proteins. Mol Cell 2024; 84:2490-2510.e9. [PMID: 38996459 DOI: 10.1016/j.molcel.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/11/2024] [Accepted: 05/31/2024] [Indexed: 07/14/2024]
Abstract
The formation of dynamic protein filaments contributes to various biological functions by clustering individual molecules together and enhancing their binding to ligands. We report such a propensity for the BTB domains of certain proteins from the ZBTB family, a large eukaryotic transcription factor family implicated in differentiation and cancer. Working with Xenopus laevis and human proteins, we solved the crystal structures of filaments formed by dimers of the BTB domains of ZBTB8A and ZBTB18 and demonstrated concentration-dependent higher-order assemblies of these dimers in solution. In cells, the BTB-domain filamentation supports clustering of full-length human ZBTB8A and ZBTB18 into dynamic nuclear foci and contributes to the ZBTB18-mediated repression of a reporter gene. The BTB domains of up to 21 human ZBTB family members and two related proteins, NACC1 and NACC2, are predicted to behave in a similar manner. Our results suggest that filamentation is a more common feature of transcription factors than is currently appreciated.
Collapse
Affiliation(s)
- Lucija Mance
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Nicolas Bigot
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT - UAR3480, 35000 Rennes, France
| | - Edison Zhamungui Sánchez
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Franck Coste
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France.
| | - Natalia Martín-González
- Aix-Marseille Université, INSERM, DyNaMo, Turing Centre for Living Systems (CENTURI), 13288 Marseille Cedex 09, France; Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille Cedex 09, France
| | - Siham Zentout
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT - UAR3480, 35000 Rennes, France
| | - Marin Biliškov
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Zofia Pukało
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Aanchal Mishra
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Catherine Chapuis
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT - UAR3480, 35000 Rennes, France
| | - Ana-Andreea Arteni
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Cryo-Electron Microscopy Facility, CRYOEM-Gif, 91198 Gif-sur-Yvette, France
| | - Axelle Lateur
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Stéphane Goffinont
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Virginie Gaudon
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Ibtissam Talhaoui
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Ignacio Casuso
- Aix-Marseille Université, INSERM, DyNaMo, Turing Centre for Living Systems (CENTURI), 13288 Marseille Cedex 09, France
| | - Martine Beaufour
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Franck Artzner
- Université Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000 Rennes, France
| | - Martine Cadene
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Sébastien Huet
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT - UAR3480, 35000 Rennes, France; Institut Universitaire de France, 75005 Paris, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Marcin Józef Suskiewicz
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France.
| |
Collapse
|
4
|
Sen C, Logashree V, Makde RD, Ghosh B. Amino acid propensities for secondary structures and its variation across protein structures using exhaustive PDB data. Comput Biol Chem 2024; 110:108083. [PMID: 38691894 DOI: 10.1016/j.compbiolchem.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Amino acid propensities for protein secondary structures are vital for protein structure prediction, understanding folding, and design, and have been studied using various theoretical and experimental methods. Traditional assessments of average propensities using statistical methods have been done on relatively smaller dataset for only a few secondary structures. They also involve averaging out the environmental factors and lack insights into consistency of preferences across diverse protein structures. While a few studies have explored variations in propensities across protein structural classes and folds, exploration of such variations across protein structures remains to be carried out. In this work, we have revised the average propensities for all six different secondary structures, namely α-helix, β-strand, 310-helix, π-helix, turn and coil, analyzing the most exhaustive dataset available till date using two robust secondary structure assignment algorithms, DSSP and STRIDE. The propensities evaluated here can serve as a standard reference. Moreover, we present here, for the first time, the propensities within individual protein structures and investigated how the preferences of residues and more interestingly, of their groups formed based on their structural features, vary across different unique structures. We devised a novel approach- the minimal set analysis, based on the propensity distribution of residues, which along with the group propensities led us to the conclusion that a residue's preference for a specific secondary structure is primarily dictated by its side chain's structural features. The findings in this study provide a more insightful picture of residues propensities and can be useful in protein folding and design studies.
Collapse
Affiliation(s)
- Chandra Sen
- Beamline Development & Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - V Logashree
- Department of Electrical Engineering, Indian Institute of Technology, Indore 453552, India
| | - Ravindra D Makde
- Beamline Development & Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Biplab Ghosh
- Beamline Development & Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
5
|
Braghetto A, Orlandini E, Baiesi M. Interpretable Machine Learning of Amino Acid Patterns in Proteins: A Statistical Ensemble Approach. J Chem Theory Comput 2023; 19:6011-6022. [PMID: 37552831 PMCID: PMC10500975 DOI: 10.1021/acs.jctc.3c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Indexed: 08/10/2023]
Abstract
Explainable and interpretable unsupervised machine learning helps one to understand the underlying structure of data. We introduce an ensemble analysis of machine learning models to consolidate their interpretation. Its application shows that restricted Boltzmann machines compress consistently into a few bits the information stored in a sequence of five amino acids at the start or end of α-helices or β-sheets. The weights learned by the machines reveal unexpected properties of the amino acids and the secondary structure of proteins: (i) His and Thr have a negligible contribution to the amphiphilic pattern of α-helices; (ii) there is a class of α-helices particularly rich in Ala at their end; (iii) Pro occupies most often slots otherwise occupied by polar or charged amino acids, and its presence at the start of helices is relevant; (iv) Glu and especially Asp on one side and Val, Leu, Iso, and Phe on the other display the strongest tendency to mark amphiphilic patterns, i.e., extreme values of an effective hydrophobicity, though they are not the most powerful (non)hydrophobic amino acids.
Collapse
Affiliation(s)
- Anna Braghetto
- Department
of Physics and Astronomy, University of
Padova, Via Marzolo 8, 35131 Padua, Italy
- INFN,
Sezione di Padova, Via
Marzolo 8, 35131 Padua, Italy
| | - Enzo Orlandini
- Department
of Physics and Astronomy, University of
Padova, Via Marzolo 8, 35131 Padua, Italy
- INFN,
Sezione di Padova, Via
Marzolo 8, 35131 Padua, Italy
| | - Marco Baiesi
- Department
of Physics and Astronomy, University of
Padova, Via Marzolo 8, 35131 Padua, Italy
- INFN,
Sezione di Padova, Via
Marzolo 8, 35131 Padua, Italy
| |
Collapse
|
6
|
Randall JR, DuPai CD, Cole TJ, Davidson G, Groover KE, Slater SL, Mavridou DA, Wilke CO, Davies BW. Designing and identifying β-hairpin peptide macrocycles with antibiotic potential. SCIENCE ADVANCES 2023; 9:eade0008. [PMID: 36630516 PMCID: PMC9833666 DOI: 10.1126/sciadv.ade0008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Peptide macrocycles are a rapidly emerging class of therapeutic, yet the design of their structure and activity remains challenging. This is especially true for those with β-hairpin structure due to weak folding properties and a propensity for aggregation. Here, we use proteomic analysis and common antimicrobial features to design a large peptide library with macrocyclic β-hairpin structure. Using an activity-driven high-throughput screen, we identify dozens of peptides killing bacteria through selective membrane disruption and analyze their biochemical features via machine learning. Active peptides contain a unique constrained structure and are highly enriched for cationic charge with arginine in their turn region. Our results provide a synthetic strategy for structured macrocyclic peptide design and discovery while also elucidating characteristics important for β-hairpin antimicrobial peptide activity.
Collapse
Affiliation(s)
- Justin R. Randall
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Cory D. DuPai
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - T. Jeffrey Cole
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Gillian Davidson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Kyra E. Groover
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Sabrina L. Slater
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Claus O. Wilke
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Bryan W. Davies
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
7
|
Sato Y, Tsuyusaki M, Takahashi-Iwanaga H, Fujisawa R, Masamune A, Hamada S, Matsumoto R, Tanaka Y, Kakuta Y, Yamaguchi-Kabata Y, Furuse T, Wakana S, Shimura T, Kobayashi R, Shinoda Y, Goitsuka R, Maezawa S, Sadakata T, Sano Y, Furuichi T. Loss of CAPS2/Cadps2 leads to exocrine pancreatic cell injury and intracellular accumulation of secretory granules in mice. Front Mol Biosci 2022; 9:1040237. [DOI: 10.3389/fmolb.2022.1040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
The type 2 Ca2+-dependent activator protein for secretion (CAPS2/CADPS2) regulates dense-core vesicle trafficking and exocytosis and is involved in the regulated release of catecholamines, peptidergic hormones, and neuromodulators. CAPS2 is expressed in the pancreatic exocrine acinar cells that produce and secrete digestive enzymes. However, the functional role of CAPS2 in vesicular trafficking and/or exocytosis of non-regulatory proteins in the exocrine pancreas remains to be determined. Here, we analyzed the morpho-pathological indicators of the pancreatic exocrine pathway in Cadps2-deficient mouse models using histochemistry, biochemistry, and electron microscopy. We used whole exosome sequencing to identify CADPS2 variants in patients with chronic pancreatitis (CP). Caps2/Cadps2-knockout (KO) mice exhibited morphophysiological abnormalities in the exocrine pancreas, including excessive accumulation of secretory granules (zymogen granules) and their amylase content in the cytoplasm, deterioration of the fine intracellular membrane structures (disorganized rough endoplasmic reticulum, dilated Golgi cisternae, and the appearance of empty vesicles and autophagic-like vacuoles), as well as exocrine pancreatic cell injury, including acinar cell atrophy, increased fibrosis, and inflammatory cell infiltration. Pancreas-specific Cadps2 conditional KO mice exhibited pathological abnormalities in the exocrine pancreas similar to the global Cadps2 KO mice, indicating that these phenotypes were caused either directly or indirectly by CAPS2 deficiency in the pancreas. Furthermore, we identified a rare variant in the exon3 coding region of CADPS2 in a non-alcoholic patient with CP and showed that Cadps2-dex3 mice lacking CAPS2 exon3 exhibited symptoms similar to those exhibited by the Cadps2 KO and cKO mice. These results suggest that CAPS2 is critical for the proper functioning of the pancreatic exocrine pathway, and its deficiency is associated with a risk of pancreatic acinar cell pathology.
Collapse
|
8
|
Rheological and structural properties of acid-induced milk gels as a function of β-casein phenotype. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Daniloski D, McCarthy NA, Vasiljevic T. Impact of heating on the properties of A1/A1, A1/A2, and A2/A2 β-casein milk phenotypes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Misra R, Vijayakanth T, Shimon LJW, Adler-Abramovich L. Atomic insight into short helical peptide comprised of consecutive multiple aromatic residues. Chem Commun (Camb) 2022; 58:6445-6448. [PMID: 35548938 DOI: 10.1039/d2cc01038k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The occurrence of sequential multiple aromatic residues in a helical sequence is rare compared to the β-sheet rich structure. Here, using helix promoting α-aminoisobutyric acid (Aib) residues, we unravel atomistic details of the helical secondary structure formation and the super helical assembly of two heptapeptides composed of sequential five and six phenylalanine (Phe) residues.
Collapse
Affiliation(s)
- Rajkumar Misra
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, The Center for Physics & Chemistry of Living Systems, and the Center for Nanoscience and Nanotechnology, Tel-Aviv University, 69978, Israel. .,Dept. of Med. Chem, NIPER Mohali, S.A.S. Nagar, Mohali, 160062, India
| | - Thangavel Vijayakanth
- The Shmunis School of Biomedicine and Cancer Research George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, The Weizmann Institute of Science, 761000, Rehovot, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, The Center for Physics & Chemistry of Living Systems, and the Center for Nanoscience and Nanotechnology, Tel-Aviv University, 69978, Israel.
| |
Collapse
|
11
|
Islam MT, Ho MF, Nahar UJ, Shalash AO, Koirala P, Hussein WM, Stanisic DI, Good MF, Skwarczynski M, Toth I. Investigation of liposomal self-adjuvanting peptide epitopes derived from conserved blood-stage Plasmodium antigens. PLoS One 2022; 17:e0264961. [PMID: 35275957 PMCID: PMC8916655 DOI: 10.1371/journal.pone.0264961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/20/2022] [Indexed: 11/19/2022] Open
Abstract
Malaria is a vector born parasitic disease causing millions of deaths every year. Despite the high mortality rate, an effective vaccine against this mosquito-borne infectious disease is yet to be developed. Up to date, RTS,S/AS01 is the only vaccine available for malaria prevention; however, its efficacy is low. Among a variety of malaria antigens, merozoite surface protein-1(MSP-1) and ring-infected erythrocyte surface antigen (RESA) have been proposed as promising candidates for malaria vaccine development. We developed peptide-based Plasmodium falciparum vaccine candidates that incorporated three previously reported conserved epitopes from MSP-1 and RESA into highly effective liposomal polyleucine delivery system. Indeed, MSP-1 and RESA-derived epitopes conjugated to polyleucine and formulated into liposomes induced higher epitope specific antibody titres. However, immunized mice failed to demonstrate protection in a rodent malaria challenge study with Plasmodium yoelii. In addition, we found that the three reported P. falciparum epitopes did not to share conformational properties and high sequence similarity with P. yoelii MSP-1 and RESA proteins, despite the epitopes were reported to protect mice against P. yoelii challenge.
Collapse
Affiliation(s)
- Md. Tanjir Islam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mei-Fong Ho
- Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Ummey J. Nahar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | | | - Michael F. Good
- Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- * E-mail: (IT); (MS)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- * E-mail: (IT); (MS)
| |
Collapse
|
12
|
Daniloskia D, McCarthy NA, O’Callaghan TF, Vasiljevic T. Authentication of β-casein milk phenotypes using FTIR spectroscopy. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Hussain A, Shuaibu AD, Shaikh AJ, Khan AM. Exploring the effects of selected essential amino acids on the self-association of sodium dodecyl sulphate at different temperatures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Azuar A, Li Z, Shibu MA, Zhao L, Luo Y, Shalash AO, Khalil ZG, Capon RJ, Hussein WM, Toth I, Skwarczynski M. Poly(hydrophobic amino acid)-Based Self-Adjuvanting Nanoparticles for Group A Streptococcus Vaccine Delivery. J Med Chem 2021; 64:2648-2658. [PMID: 33529034 DOI: 10.1021/acs.jmedchem.0c01660] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptide antigens have been widely used in the development of vaccines, especially for those against autoimmunity-inducing pathogens and cancers. However, peptide-based vaccines require adjuvant and/or a delivery system to stimulate desired immune responses. Here, we explored the potential of self-adjuvanting poly(hydrophobic amino acids) (pHAAs) to deliver peptide-based vaccine against Group A Streptococcus (GAS). We designed and synthesized self-assembled nanoparticles with a variety of conjugates bearing a peptide antigen (J8-PADRE) and polymerized hydrophobic amino acids to evaluate the effects of structural arrangement and pHAAs properties on a system's ability to induce humoral immune responses. Immunogenicity of the developed conjugates was also compared to commercially available human adjuvants. We found that a linear conjugate bearing J8-PADRE and 15 copies of leucine induced equally effective, or greater, immune responses than commercial adjuvants. Our fully defined, adjuvant-free, single molecule-based vaccine induced the production of antibodies capable of killing GAS bacteria.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zhuoqing Li
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mohini A Shibu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Lili Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Yacheng Luo
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, Woolloongabba, The University of Queensland, St. Lucia, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
15
|
DuPai CD, Davies BW, Wilke CO. A systematic analysis of the beta hairpin motif in the Protein Data Bank. Protein Sci 2021; 30:613-623. [PMID: 33389765 DOI: 10.1002/pro.4020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022]
Abstract
The beta hairpin motif is a ubiquitous protein structural motif that can be found in molecules across the tree of life. This motif, which is also popular in synthetically designed proteins and peptides, is known for its stability and adaptability to broad functions. Here, we systematically probe all 49,000 unique beta hairpin substructures contained within the Protein Data Bank (PDB) to uncover key characteristics correlated with stable beta hairpin structure, including amino acid biases and enriched interstrand contacts. We find that position specific amino acid preferences, while seen throughout the beta hairpin structure, are most evident within the turn region, where they depend on subtle turn dynamics associated with turn length and secondary structure. We also establish a set of broad design principles, such as the inclusion of aspartic acid residues at a specific position and the careful consideration of desired secondary structure when selecting residues for the turn region, that can be applied to the generation of libraries encoding proteins or peptides containing beta hairpin structures.
Collapse
Affiliation(s)
- Cory D DuPai
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.,Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Bryan W Davies
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.,Center for Systems and Synthetic Biology, John Ring LaMontagne Center for Infectious Diseases, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Claus O Wilke
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
16
|
Skwarczynski M, Zhao G, Boer JC, Ozberk V, Azuar A, Cruz JG, Giddam AK, Khalil ZG, Pandey M, Shibu MA, Hussein WM, Nevagi RJ, Batzloff MR, Wells JW, Capon RJ, Plebanski M, Good MF, Toth I. Poly(amino acids) as a potent self-adjuvanting delivery system for peptide-based nanovaccines. SCIENCE ADVANCES 2020; 6:eaax2285. [PMID: 32064333 PMCID: PMC6989150 DOI: 10.1126/sciadv.aax2285] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/21/2019] [Indexed: 05/05/2023]
Abstract
To be optimally effective, peptide-based vaccines need to be administered with adjuvants. Many currently available adjuvants are toxic, not biodegradable; they invariably invoke adverse reactions, including allergic responses and excessive inflammation. A nontoxic, biodegradable, biocompatible, self-adjuvanting vaccine delivery system is urgently needed. Herein, we report a potent vaccine delivery system fulfilling the above requirements. A peptide antigen was coupled with poly-hydrophobic amino acid sequences serving as self-adjuvanting moieties using solid-phase synthesis, to produce fully defined single molecular entities. Under aqueous conditions, these molecules self-assembled into distinct nanoparticles and chain-like aggregates. Following subcutaneous immunization in mice, these particles successfully induced opsonic epitope-specific antibodies without the need of external adjuvant. Mice immunized with entities bearing 15 leucine residues were able to clear bacterial load from target organs without triggering the release of soluble inflammatory mediators. Thus, we have developed a well-defined and effective self-adjuvanting delivery system for peptide antigens.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
| | - Guangzu Zhao
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
| | - Jennifer C. Boer
- School of Health and Biomedical Sciences, RMIT University, Victoria 3083, Australia
| | - Victoria Ozberk
- Griffith University, Institute for Glycomics, Gold Coast, QLD 4222, Australia
| | - Armira Azuar
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
| | - Jazmina Gonzalez Cruz
- The University of Queensland, Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia
| | | | - Zeinab G. Khalil
- The University of Queensland, Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Manisha Pandey
- Griffith University, Institute for Glycomics, Gold Coast, QLD 4222, Australia
| | - Mohini A. Shibu
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
| | - Waleed M. Hussein
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
| | - Reshma J. Nevagi
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
| | - Michael R. Batzloff
- Griffith University, Institute for Glycomics, Gold Coast, QLD 4222, Australia
| | - James W. Wells
- The University of Queensland, Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Robert J. Capon
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD 4072, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Victoria 3083, Australia
| | - Michael F. Good
- Griffith University, Institute for Glycomics, Gold Coast, QLD 4222, Australia
| | - Istvan Toth
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD 4072, Australia
- The University of Queensland, School of Pharmacy, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
17
|
Kim K, Min J, Kirby TW, Gabel SA, Pedersen LC, London RE. Ligand binding characteristics of the Ku80 von Willebrand domain. DNA Repair (Amst) 2020; 85:102739. [PMID: 31733588 PMCID: PMC7495496 DOI: 10.1016/j.dnarep.2019.102739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/18/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
The N-terminal von Willebrand domain of Ku80 supports interactions with a Ku binding motif (KBM) that has been identified in at least three other DNA repair proteins: the non-homologous end joining (NHEJ) scaffold APLF, the modulator of retrovirus infection, MRI, and the Werner syndrome protein (WRN). A second, more recently identified Ku binding motif present in XLF and several other proteins (KBMX) has also been reported to interact with this domain. The isolated Ku80 von Willebrand antigen domain (vWA) from Xenopus laevis has a sequence that is 60% identical with the human domain, is readily expressed and has been used to investigate these interactions. Structural characterization of the complexes formed with the KBM motifs in human APLF, MRI, and WRN identify a conserved binding site that is consistent with previously-reported mutational studies. In contrast with the KBM binding site, structural studies indicate that the KBMX site is occluded by a distorted helix. Fluorescence polarization and 19F NMR studies of a fluorinated XLF C-terminal peptide failed to indicate any interaction with the frog vWA. It was hypothesized that availability of this binding site is conditional, i.e., dependent on specific experimental conditions or other repair factors to make the site available for binding. Modulating the fraction of KBMX-accessible binding site mutationally demonstrated that the more open site is capable of binding the KBMXXLF motif peptide. It is suggested that the conditional nature of KBMX binding limits formation of non-productive complexes so that activation-dependent site availability can more optimally support advancing the synapsis process.
Collapse
Affiliation(s)
- Kyungmin Kim
- Genome Integrity and Structural Biology Laboratory, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Jungki Min
- Genome Integrity and Structural Biology Laboratory, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Thomas W Kirby
- Genome Integrity and Structural Biology Laboratory, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Scott A Gabel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
18
|
Mason TO, Buell AK. The Kinetics, Thermodynamics and Mechanisms of Short Aromatic Peptide Self-Assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:61-112. [PMID: 31713197 DOI: 10.1007/978-981-13-9791-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The self-assembly of short aromatic peptides and peptide derivatives into a variety of different nano- and microstructures (fibrillar gels, crystals, spheres, plates) is a promising route toward the creation of bio-compatible materials with often unexpected and useful properties. Furthermore, such simple self-assembling systems have been proposed as model systems for the self-assembly of longer peptides, a process that can be linked to biological function and malfunction. Much effort has been made in the last 15 years to explore the space of peptide sequences, chemical modifications and solvent conditions in order to maximise the diversity of assembly morphologies and properties. However, quantitative studies of the corresponding mechanisms of, and driving forces for, peptide self-assembly have remained relatively scarce until recently. In this chapter we review the current state of understanding of the thermodynamic driving forces and self-assembly mechanisms of short aromatic peptides into supramolecular structures. We will focus on experimental studies of the assembly process and our perspective will be centered around diphenylalanine (FF), a key motif of the amyloid β sequence and a paradigmatic self-assembly building block. Our main focus is the basic physical chemistry and key structural aspects of such systems, and we will also compare the mechanism of dipeptide aggregation with that of longer peptide sequences into amyloid fibrils, with discussion on how these mechanisms may be revealed through detailed analysis of growth kinetics, thermodynamics and other fundamental properties of the aggregation process.
Collapse
Affiliation(s)
- Thomas O Mason
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DTU, Lyngby, Denmark.
| |
Collapse
|
19
|
Maestri E, Pavlicevic M, Montorsi M, Marmiroli N. Meta-Analysis for Correlating Structure of Bioactive Peptides in Foods of Animal Origin with Regard to Effect and Stability. Compr Rev Food Sci Food Saf 2018; 18:3-30. [PMID: 33337011 DOI: 10.1111/1541-4337.12402] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 01/09/2023]
Abstract
Amino acid (AA) sequences of 807 bioactive peptides from foods of animal origin were examined in order to correlate peptide structure with activity (antihypertensive, antioxidative, immunomodulatory, antimicrobial, hypolipidemic, antithrombotic, and opioid) and stability in vivo. Food sources, such as milk, meat, eggs, and marine products, show different frequencies of bioactive peptides exhibiting specific effects. There is a correlation of peptide structure and effect, depending on type and position of AA. Opioid peptides contain a high percentage of aromatic AA residues, while antimicrobial peptides show an excess of positively charged AAs. AA residue position is significant, with those in the first and penultimate positions having the biggest effects on peptide activity. Peptides that have activity in vivo contain a high percentage (67%) of proline residues, but the positions of proline in the sequence depend on the length of the peptide. We also discuss the influence of processing on activity of these peptides, as well as methods for predicting release from the source protein and activity of peptides.
Collapse
Affiliation(s)
- Elena Maestri
- Dept. of Chemistry, Life Sciences and Environmental Sustainability, Univ. of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy.,Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA), Univ. of Parma, Parco Area delle Scienze, 43124, Parma, Italy
| | - Milica Pavlicevic
- Inst. for Food Technology and Biochemistry, Faculty of Agriculture, Univ. of Belgrade, Belgrade, Serbia
| | - Michela Montorsi
- Dept. of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open Univ., Via F. Daverio 7, 20122, Milan, Italy.,Consorzio Italbiotec, Via Fantoli, 16/15, 20138, Milano, Italy.,Inst. of Bioimaging and Molecular Physiology, National Council of Research (CNR), Via Fratelli Cervi 93, 20090, Segrate, Italy
| | - Nelson Marmiroli
- Dept. of Chemistry, Life Sciences and Environmental Sustainability, Univ. of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy.,Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA), Univ. of Parma, Parco Area delle Scienze, 43124, Parma, Italy.,Consorzio Italbiotec, Via Fantoli, 16/15, 20138, Milano, Italy
| |
Collapse
|
20
|
Crowet JM, Nasir MN, Dony N, Deschamps A, Stroobant V, Morsomme P, Deleu M, Soumillion P, Lins L. Insight into the Self-Assembling Properties of Peptergents: A Molecular Dynamics Simulation Study. Int J Mol Sci 2018; 19:ijms19092772. [PMID: 30223492 PMCID: PMC6163580 DOI: 10.3390/ijms19092772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 11/16/2022] Open
Abstract
By manipulating the various physicochemical properties of amino acids, the design of peptides with specific self-assembling properties has been emerging for more than a decade. In this context, short peptides possessing detergent properties (so-called "peptergents") have been developed to self-assemble into well-ordered nanostructures that can stabilize membrane proteins for crystallization. In this study, the peptide with "peptergency" properties, called ADA8 and extensively described by Tao et al., is studied by molecular dynamic simulations for its self-assembling properties in different conditions. In water, it spontaneously forms beta sheets with a β barrel-like structure. We next simulated the interaction of this peptide with a membrane protein, the bacteriorhodopsin, in the presence or absence of a micelle of dodecylphosphocholine. According to the literature, the peptergent ADA8 is thought to generate a belt of β structures around the hydrophobic helical domain that could help stabilize purified membrane proteins. Molecular dynamic simulations are here used to image this mechanism and provide further molecular details for the replacement of detergent molecules around the protein. In addition, we generalized this behavior by designing an amphipathic peptide with beta propensity, which was called ABZ12. Both peptides are able to surround the membrane protein and displace surfactant molecules. To our best knowledge, this is the first molecular mechanism proposed for "peptergency".
Collapse
Affiliation(s)
- Jean Marc Crowet
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés 2, 5030 Gembloux, Belgium.
| | - Mehmet Nail Nasir
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés 2, 5030 Gembloux, Belgium.
| | - Nicolas Dony
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés 2, 5030 Gembloux, Belgium.
| | - Antoine Deschamps
- Institut des Sciences de la Vie, Université catholique de Louvain, 4-5 Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, de Duve Institute and Université Catholique de Louvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium.
| | - Pierre Morsomme
- Institut des Sciences de la Vie, Université catholique de Louvain, 4-5 Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés 2, 5030 Gembloux, Belgium.
| | - Patrice Soumillion
- Institut des Sciences de la Vie, Université catholique de Louvain, 4-5 Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
| | - Laurence Lins
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés 2, 5030 Gembloux, Belgium.
| |
Collapse
|
21
|
Tumbale P, Schellenberg MJ, Mueller GA, Fairweather E, Watson M, Little JN, Krahn J, Waddell I, London RE, Williams RS. Mechanism of APTX nicked DNA sensing and pleiotropic inactivation in neurodegenerative disease. EMBO J 2018; 37:embj.201798875. [PMID: 29934293 PMCID: PMC6043908 DOI: 10.15252/embj.201798875] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/27/2018] [Accepted: 05/29/2018] [Indexed: 01/09/2023] Open
Abstract
The failure of DNA ligases to complete their catalytic reactions generates cytotoxic adenylated DNA strand breaks. The APTX RNA-DNA deadenylase protects genome integrity and corrects abortive DNA ligation arising during ribonucleotide excision repair and base excision DNA repair, and APTX human mutations cause the neurodegenerative disorder ataxia with oculomotor ataxia 1 (AOA1). How APTX senses cognate DNA nicks and is inactivated in AOA1 remains incompletely defined. Here, we report X-ray structures of APTX engaging nicked RNA-DNA substrates that provide direct evidence for a wedge-pivot-cut strategy for 5'-AMP resolution shared with the alternate 5'-AMP processing enzymes POLβ and FEN1. Our results uncover a DNA-induced fit mechanism regulating APTX active site loop conformations and assembly of a catalytically competent active center. Further, based on comprehensive biochemical, X-ray and solution NMR results, we define a complex hierarchy for the differential impacts of the AOA1 mutational spectrum on APTX structure and activity. Sixteen AOA1 variants impact APTX protein stability, one mutation directly alters deadenylation reaction chemistry, and a dominant AOA1 variant unexpectedly allosterically modulates APTX active site conformations.
Collapse
Affiliation(s)
- Percy Tumbale
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health Sciences, US National Institutes of HealthResearch Triangle ParkNCUSA
| | - Matthew J Schellenberg
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health Sciences, US National Institutes of HealthResearch Triangle ParkNCUSA
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health Sciences, US National Institutes of HealthResearch Triangle ParkNCUSA
| | - Emma Fairweather
- Drug Discovery Group Cancer Research UK Manchester InstituteManchesterUK
| | - Mandy Watson
- Drug Discovery Group Cancer Research UK Manchester InstituteManchesterUK
| | - Jessica N Little
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health Sciences, US National Institutes of HealthResearch Triangle ParkNCUSA
| | - Juno Krahn
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health Sciences, US National Institutes of HealthResearch Triangle ParkNCUSA
| | - Ian Waddell
- Drug Discovery Group Cancer Research UK Manchester InstituteManchesterUK
| | - Robert E London
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health Sciences, US National Institutes of HealthResearch Triangle ParkNCUSA
| | - R Scott Williams
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health Sciences, US National Institutes of HealthResearch Triangle ParkNCUSA
| |
Collapse
|
22
|
Skibinski DOF, Ghiselli F, Diz AP, Milani L, Mullins JGL. Structure-Related Differences between Cytochrome Oxidase I Proteins in a Stable Heteroplasmic Mitochondrial System. Genome Biol Evol 2018; 9:3265-3281. [PMID: 29149282 PMCID: PMC5726481 DOI: 10.1093/gbe/evx235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2017] [Indexed: 12/27/2022] Open
Abstract
Many bivalve species have two types of mitochondrial DNA passed independently through the female line (F genome) and male line (M genome). Here we study the cytochrome oxidase I protein in such bivalve species and provide evidence for differences between the F and M proteins in amino acid property values, particularly relating to hydrophobicity and helicity. The magnitude of these differences varies between different regions of the protein and the change from the ancestor is most marked in the M protein. The observed changes occur in parallel and in the same direction in the different species studied. Two possible causes are considered, first relaxation of purifying selection with drift and second positive selection. These may operate in different ways in different regions of the protein. Many different amino acid substitutions contribute in a small way to the observed variation, but substitutions involving alanine and serine have a quantitatively large effect. Some of these substitutions are potential targets for phosphorylation and some are close to residues of functional importance in the catalytic mechanism. We propose that the observed changes in the F and M proteins might contribute to functional differences between them relating to ATP production and mitochondrial membrane potential with implications for sperm function.
Collapse
Affiliation(s)
- David O F Skibinski
- Institute of Life Science, Swansea University Medical School, United Kingdom
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Angel P Diz
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Spain
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | | |
Collapse
|
23
|
Upadhyay A, Mishra A. Amyloids of multiple species: are they helpful in survival? Biol Rev Camb Philos Soc 2018; 93:1363-1386. [DOI: 10.1111/brv.12399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| |
Collapse
|
24
|
Lee S, Wang C, Liu H, Xiong J, Jiji R, Hong X, Yan X, Chen Z, Hammel M, Wang Y, Dai S, Wang J, Jiang C, Zhang G. Hydrogen bonds are a primary driving force for de novo protein folding. Acta Crystallogr D Struct Biol 2017; 73:955-969. [PMID: 29199976 PMCID: PMC5713874 DOI: 10.1107/s2059798317015303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/20/2017] [Indexed: 01/09/2023] Open
Abstract
The protein-folding mechanism remains a major puzzle in life science. Purified soluble activation-induced cytidine deaminase (AID) is one of the most difficult proteins to obtain. Starting from inclusion bodies containing a C-terminally truncated version of AID (residues 1-153; AID153), an optimized in vitro folding procedure was derived to obtain large amounts of AID153, which led to crystals with good quality and to final structural determination. Interestingly, it was found that the final refolding yield of the protein is proline residue-dependent. The difference in the distribution of cis and trans configurations of proline residues in the protein after complete denaturation is a major determining factor of the final yield. A point mutation of one of four proline residues to an asparagine led to a near-doubling of the yield of refolded protein after complete denaturation. It was concluded that the driving force behind protein folding could not overcome the cis-to-trans proline isomerization, or vice versa, during the protein-folding process. Furthermore, it was found that successful refolding of proteins optimally occurs at high pH values, which may mimic protein folding in vivo. It was found that high pH values could induce the polarization of peptide bonds, which may trigger the formation of protein secondary structures through hydrogen bonds. It is proposed that a hydrophobic environment coupled with negative charges is essential for protein folding. Combined with our earlier discoveries on protein-unfolding mechanisms, it is proposed that hydrogen bonds are a primary driving force for de novo protein folding.
Collapse
Affiliation(s)
- Schuyler Lee
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Chao Wang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Haolin Liu
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Jian Xiong
- Department of Chemistry, University of Missouri, Columbus, Mississippi, USA
| | - Renee Jiji
- Department of Chemistry, University of Missouri, Columbus, Mississippi, USA
| | - Xia Hong
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Xiaoxue Yan
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Zhangguo Chen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Michal Hammel
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yang Wang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Shaodong Dai
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Jing Wang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Chengyu Jiang
- Department of Biochemistry and Molecular Biology, Peking Union Medical College, Beijing 100005, People’s Republic of China
| | - Gongyi Zhang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| |
Collapse
|
25
|
Kirby TW, Gassman NR, Smith CE, Zhao ML, Horton JK, Wilson SH, London RE. DNA polymerase β contains a functional nuclear localization signal at its N-terminus. Nucleic Acids Res 2017; 45:1958-1970. [PMID: 27956495 PMCID: PMC5389473 DOI: 10.1093/nar/gkw1257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/02/2016] [Indexed: 12/23/2022] Open
Abstract
DNA polymerase β (pol β) requires nuclear localization to fulfil its DNA repair function. Although its small size has been interpreted to imply the absence of a need for active nuclear import, sequence and structural analysis suggests that a monopartite nuclear localization signal (NLS) may reside in the N-terminal lyase domain. Binding of this domain to Importin α1 (Impα1) was confirmed by gel filtration and NMR studies. Affinity was quantified by fluorescence polarization analysis of a fluorescein-tagged peptide corresponding to pol β residues 2–13. These studies indicate high affinity binding, characterized by a low micromolar Kd, that is selective for the murine Importin α1 (mImpα1) minor site, with the Kd strengthening to ∼140 nM for the full lyase domain (residues 2–87). A further reduction in Kd obtains in binding studies with human Importin α5 (hImpα5), which in some cases has been demonstrated to bind small domains connected to the NLS. The role of this NLS was confirmed by fluorescent imaging of wild-type and NLS-mutated pol β(R4S,K5S) in mouse embryonic fibroblasts lacking endogenous pol β. Together these data demonstrate that pol β contains a specific NLS sequence in the N-terminal lyase domain that promotes transport of the protein independent of its interaction partners. Active nuclear uptake allows development of a nuclear/cytosolic concentration gradient against a background of passive diffusion.
Collapse
Affiliation(s)
- Thomas W Kirby
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Natalie R Gassman
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Cassandra E Smith
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ming-Lang Zhao
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Julie K Horton
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert E London
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
26
|
Zhang H, Park J, Jiang Y, Woodrow KA. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds. Acta Biomater 2017; 55:183-193. [PMID: 28365480 DOI: 10.1016/j.actbio.2017.03.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/13/2017] [Accepted: 03/27/2017] [Indexed: 11/25/2022]
Abstract
Self-assembling peptides programed by sequence design to form predefined nanostructures are useful for a variety of biomedical applications. However, assemblies of classic ionic self-complementary peptides are unstable in neutral pH, while charged peptide hydrogels have low mechanical strength. Here, we report on the rational design of a self-assembling peptide system with optimized charge distribution and density for bioscaffold development. Our designer peptides employs a sequence pattern that undergoes salt triggered self-assembly into β-sheet rich cationic nanofibers in the full pH range (pH 0-14). Our peptides form nanofibrils in physiological condition at a minimum concentration that is significantly lower than has been reported for self-assembly of comparable peptides. The robust fiber-forming ability of our peptides results in the rapid formation of hydrogels in physiological conditions with strong mechanical strength. Moreover, fiber structure is maintained even upon dense conjugation with a model bioactive cargo OVA257-264 peptide. Nanofibers carrying OVA257-264 significantly enhanced CD8+ T cell activation in vitro. Subcutaneous immunization of our peptide fiber vaccine also elicited robust CD8+ T cell activation and proliferation in vivo. Our self-assembling peptides are expected to provide a versatile platform to construct diverse biomaterials. STATEMENT OF SIGNIFICANCE This work is an attempt of rational design of materials from molecular level for targeted properties and an exploration in molecular self-assembly. Current widely studied self-assembling peptides do not have stable nanofiber structures and form weak hydrogels under physiological conditions. To address this issue, we develop charged self-assembling peptides with a novel sequence pattern for strong fiber-forming ability under physiological conditions. Our designer peptides can undergo salt-triggered self-assembly into nanofibers that are ultrastable in extreme pH (0-14) and dilute solutions, and into hydrogels with strong mechanical strength. Upon conjugation with a model bioactive cargo, our self-assembled peptides exhibit great potential as bioscaffolds for multiple applications.
Collapse
|
27
|
Structural Maturation of HIV-1 Reverse Transcriptase-A Metamorphic Solution to Genomic Instability. Viruses 2016; 8:v8100260. [PMID: 27690082 PMCID: PMC5086598 DOI: 10.3390/v8100260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT)—a critical enzyme of the viral life cycle—undergoes a complex maturation process, required so that a pair of p66 precursor proteins can develop conformationally along different pathways, one evolving to form active polymerase and ribonuclease H (RH) domains, while the second forms a non-functional polymerase and a proteolyzed RH domain. These parallel maturation pathways rely on the structural ambiguity of a metamorphic polymerase domain, for which the sequence–structure relationship is not unique. Recent nuclear magnetic resonance (NMR) studies utilizing selective labeling techniques, and structural characterization of the p66 monomer precursor have provided important insights into the details of this maturation pathway, revealing many aspects of the three major steps involved: (1) domain rearrangement; (2) dimerization; and (3) subunit-selective RH domain proteolysis. This review summarizes the major structural changes that occur during the maturation process. We also highlight how mutations, often viewed within the context of the mature RT heterodimer, can exert a major influence on maturation and dimerization. It is further suggested that several steps in the RT maturation pathway may provide attractive targets for drug development.
Collapse
|
28
|
Anion–π interactions in complexes of proteins and halogen-containing amino acids. J Biol Inorg Chem 2016; 21:357-68. [DOI: 10.1007/s00775-016-1346-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
29
|
Srivastava A, Balaji PV. Molecular events during the early stages of aggregation of GNNQQNY: An all atom MD simulation study of randomly dispersed peptides. J Struct Biol 2015; 192:376-391. [DOI: 10.1016/j.jsb.2015.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/26/2015] [Accepted: 09/30/2015] [Indexed: 12/11/2022]
|
30
|
Investigations on the role of CH…O interactions and its impact on stability and specificity of penicillin binding proteins. Comput Biol Med 2015; 65:85-92. [DOI: 10.1016/j.compbiomed.2015.07.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 07/09/2015] [Accepted: 07/31/2015] [Indexed: 11/22/2022]
|
31
|
DasGupta D, Kaushik R, Jayaram B. From Ramachandran Maps to Tertiary Structures of Proteins. J Phys Chem B 2015; 119:11136-45. [DOI: 10.1021/acs.jpcb.5b02999] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debarati DasGupta
- Department of Chemistry, ‡Supercomputing Facility for Bioinformatics & Computational Biology, and §Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | - Rahul Kaushik
- Department of Chemistry, ‡Supercomputing Facility for Bioinformatics & Computational Biology, and §Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | - B. Jayaram
- Department of Chemistry, ‡Supercomputing Facility for Bioinformatics & Computational Biology, and §Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| |
Collapse
|
32
|
Mucić ID, Nikolić MR, Stojanović SĐ. Contribution of cation-π interactions to the stability of Sm/LSm oligomeric assemblies. PROTOPLASMA 2015; 252:947-958. [PMID: 25408427 DOI: 10.1007/s00709-014-0727-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/30/2014] [Indexed: 06/04/2023]
Abstract
In this work, we have analyzed the influence of cation-π interactions to the stability of Sm/LSm assemblies and their environmental preferences. The number of interactions formed by arginine is higher than lysine in the cationic group, while histidine is comparatively higher than phenylalanine and tyrosine in the π group. Arg-Tyr interactions are predominant among the various pairs analyzed. The furcation level of multiple cation-π interactions is much higher than that of single cation-π interactions in Sm/LSm interfaces. We have found hot spot residues forming cation-π interactions, and hot spot composition is similar for all aromatic residues. The Arg-Phe pair has the strongest interaction energy of -8.81 kcal mol(-1) among all the possible pairs of amino acids. The extent of burial of the residue side-chain correlates with the ΔΔG of binding for residues in the core and also for hot spot residues cation-π bonded across the interface. Secondary structure of the cation-π residues shows that Arg and Lys preferred to be in strand. Among the π residues, His prefers to be in helix, Phe prefers to be in turn, and Tyr prefers to be in strand. Stabilization centers for these proteins showed that all the five residues found in cation-π interactions are important in locating one or more of such centers. More than 50 % of the cation-π interacting residues are highly conserved. It is likely that the cation-π interactions contribute significantly to the overall stability of Sm/LSm proteins.
Collapse
Affiliation(s)
- Ivana D Mucić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | | | | |
Collapse
|
33
|
Hicks TM, Verbeek CJR, Lay MC, Manley-Harris M. Changes to amino acid composition of bloodmeal after chemical oxidation. RSC Adv 2015. [DOI: 10.1039/c5ra10587k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effect of oxidative decolouring with peracetic acid on the physical and chemical characteristics of bloodmeal proteins was investigated by assessing protein solubility, molecular weight distribution and final amino acid composition.
Collapse
Affiliation(s)
- T. M. Hicks
- School of Engineering
- Faculty of Science and Engineering
- University of Waikato
- Hamilton 3240
- New Zealand
| | - C. J. R. Verbeek
- School of Engineering
- Faculty of Science and Engineering
- University of Waikato
- Hamilton 3240
- New Zealand
| | - M. C. Lay
- School of Engineering
- Faculty of Science and Engineering
- University of Waikato
- Hamilton 3240
- New Zealand
| | - M. Manley-Harris
- School of Science
- Faculty of Science and Engineering
- University of Waikato
- Hamilton 3240
- New Zealand
| |
Collapse
|
34
|
Zlatović MV, Borozan SZ, Nikolić MR, Stojanović SĐ. Anion–π interactions in protein–porphyrin complexes. RSC Adv 2015. [DOI: 10.1039/c5ra03373j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, we have analyzed the influence of anion–π interactions on the stability of high resolution protein–porphyrin complex crystal structures.
Collapse
Affiliation(s)
| | - Sunčica Z. Borozan
- Department of Chemistry
- Faculty of Veterinary Medicine
- University of Belgrade
- Belgrade
- Serbia
| | | | | |
Collapse
|
35
|
Breberina LM, Milčić MK, Nikolić MR, Stojanović SĐ. Contribution of anion-π interactions to the stability of Sm/LSm proteins. J Biol Inorg Chem 2014; 20:475-85. [PMID: 25502146 DOI: 10.1007/s00775-014-1227-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/29/2014] [Indexed: 12/29/2022]
Abstract
We have analyzed the influence of anion-π interactions to the stability of Sm/LSm assemblies. The side chain of Glu is more likely to be in anion-π interactions than Asp. Phe has the highest occurrence in these interactions than the other two π residues. Among the anion-π residue pairs, Glu-Phe residue pair showed the maximum number of anion-π. We have found hot-spot residues forming anion-π interactions, and Glu-Phe is the most common hot-spot interacting pair. The significant numbers of anion-π interacting residues identified in the dataset were involved in the formation of multiple anion-π interactions. More than half of the residues involved in these interactions are evolutionarily conserved. The anion-π interaction energies are distance and orientation dependent. It was found that anion-π interactions showed energy less than -15 kcal mol(-1), and most of them have energy in the range -2 to -9 kcal mol(-1). Solvent accessibility pattern of Sm/LSm proteins reveals that all of the interacting residues are preferred to be in buried regions. Most of the interacting residues preferred to be in strand. A significant percentage of anion-π interacting residues are located as stabilization centers and thus might provide additional stability to these proteins. The simultaneous interaction of anions and cations on different faces of the same π-system has been observed. On the whole, the results presented in this work will be very useful for understanding the contribution of anion-π interaction to the stability of Sm/LSm proteins.
Collapse
|
36
|
Farrokh P, Yakhchali B, Karkhane AA. Rational Design of K173A Substitution Enhances Thermostability Coupled with Catalytic Activity of Enterobacter sp. Bn12 Lipase. J Mol Microbiol Biotechnol 2014; 24:262-9. [DOI: 10.1159/000365890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
Lavanya P, Ramaiah S, Anbarasu A. Binding site residues in β-lactamases: role in non-classical interactions and metal binding. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.956661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- P. Lavanya
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, India
| | - Sudha Ramaiah
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, India
| | - Anand Anbarasu
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
38
|
Doss CGP, Rajith B, Rajasekaran R, Srajan J, Nagasundaram N, Debajyoti C. In silico analysis of prion protein mutants: a comparative study by molecular dynamics approach. Cell Biochem Biophys 2014; 67:1307-18. [PMID: 23723004 DOI: 10.1007/s12013-013-9663-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Polymorphisms in the human prion proteins lead to amino acid substitutions by the conversion of PrPC to PrPSc and amyloid formation, resulting in prion diseases such as familial Creutzfeldt-Jakob disease, Gerstmann-Straussler-Scheinker disease and fatal familial insomnia. Cation-π interaction is a non-covalent binding force that plays a significant role in protein stability. Here, we employ a novel approach by combining various in silico tools along with molecular dynamics simulation to provide structural and functional insight into the effect of mutation on the stability and activity of mutant prion proteins. We have investigated impressions of prevalent mutations including 1E1S, 1E1P, 1E1U, 1E1P, 1FKC and 2K1D on the human prion proteins and compared them with wild type. Structural analyses of the models were performed with the aid of molecular dynamics simulation methods. According to our results, frequently occurred mutations were observed in conserved sequences of human prion proteins and the most fluctuation values appear in the 2K1D mutant model at around helix 4 with residues ranging from 190 to 194. Our observations in this study could help to further understand the structural stability of prion proteins.
Collapse
Affiliation(s)
- C George Priya Doss
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India,
| | | | | | | | | | | |
Collapse
|
39
|
Gabel SA, DeRose EF, London RE. XRCC1 interaction with the REV1 C-terminal domain suggests a role in post replication repair. DNA Repair (Amst) 2014; 12:1105-13. [PMID: 24409475 DOI: 10.1016/j.dnarep.2013.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The function of X-ray cross complementing group 1 protein (XRCC1), a scaffold that binds to DNA repair enzymes involved in single-strand break and base excision repair, requires that it be recruited to sites of damaged DNA. However, structural insights into this recruitment are currently limited. Sequence analysis of the first unstructured linker domain of XRCC1 identifies a segment consistent with a possible REV1 interacting region (X1RIR) motif. The X1RIR motif is present in translesion polymerases that can be recruited to the pol /REV1 DNA repair complex via a specific interaction with the REV1 C-terminal domain. NMR and fluorescence titration studies were performed on XRCC1-derived peptides containing this putative RIR motif in order to evaluate the binding affinity for the REV1 C-terminal domain. These studies demonstrate an interaction of the XRCC1-derived peptide with the human REV1 C-terminal domain characterized by dissociation constants in the low micromolar range. Ligand competition studies comparing the XRCC1 RIR peptide with previously studied RIR peptides were found to be inconsistent with the NMR based Kd values. These discrepancies were resolved using a fluorescence assay for which the RIR–REV1 system is particularly well suited. The structure of a REV1-XRCC1 peptide complex was determined by using NOE restraints to dock the unlabeled XRCC1 peptide with a labeled REV1 C-terminal domain. The structure is generally homologous with previously determined complexes with the pol κ and pol η RIR peptides, although the helical segment in XRCC1 is shorter than was observed in these cases. These studies suggest the possible involvement of XRCC1 and its associated repair factors in post replication repair.
Collapse
|
40
|
Todde G, Hovmöller S, Laaksonen A, Mocci F. Glucose oxidase from Penicillium amagasakiense: characterization of the transition state of its denaturation from molecular dynamics simulations. Proteins 2014; 82:2353-63. [PMID: 24810265 DOI: 10.1002/prot.24596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/22/2014] [Accepted: 04/29/2014] [Indexed: 01/07/2023]
Abstract
Glucose oxidase (GOx) is a flavoenzyme having applications in food and medical industries. However, GOx, as many other enzymes when extracted from the cells, has relatively short operational lifetimes. Several recent studies (both experimental and theoretical), carried out on small proteins (or small fractions of large proteins), show that a detailed knowledge of how the breakdown process starts and proceeds on molecular level could be of significant help to artificially improve the stability of fragile proteins. We have performed extended molecular dynamics (MD) simulations to study the denaturation of GOx (a protein dimer containing nearly 1200 amino acids) to identify weak points in its structure and in this way gather information to later make it more stable, for example, by mutations. A denaturation of a protein can be simulated by increasing the temperature far above physiological temperature. We have performed a series of MD simulations at different temperatures (300, 400, 500, and 600 K). The exit from the protein's native state has been successfully identified with the clustering method and supported by other methods used to analyze the simulation data. A common set of amino acids is regularly found to initiate the denaturation, suggesting a moiety where the enzyme could be strengthened by a suitable amino acid based modification.
Collapse
Affiliation(s)
- Guido Todde
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
41
|
Carrascoza F, Zaric S, Silaghi-Dumitrescu R. Computational study of protein secondary structure elements: Ramachandran plots revisited. J Mol Graph Model 2014; 50:125-33. [DOI: 10.1016/j.jmgm.2014.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 11/28/2022]
|
42
|
Lavanya P, Ramaiah S, Anbarasu A. Computational analysis of N–H⋯π interactions and its impact on the structural stability of β-lactamases. Comput Biol Med 2014; 46:22-8. [DOI: 10.1016/j.compbiomed.2013.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 10/25/2022]
|
43
|
Hicks T, Verbeek CJR, Lay MC, Bier JM. Effect of oxidative treatment on the secondary structure of decoloured bloodmeal. RSC Adv 2014. [DOI: 10.1039/c4ra03890h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Synchrotron-based Fourier-transform infrared (FTIR) spectroscopy was used to assess the effect of peracetic acid decolouring on the spatial distribution of secondary structures within particles of bloodmeal.
Collapse
Affiliation(s)
- Talia Hicks
- School of Engineering
- Faculty of Science and Engineering
- University of Waikato
- Hamilton 3240, New Zealand
| | - Casparus J. R. Verbeek
- School of Engineering
- Faculty of Science and Engineering
- University of Waikato
- Hamilton 3240, New Zealand
| | - Mark C. Lay
- School of Engineering
- Faculty of Science and Engineering
- University of Waikato
- Hamilton 3240, New Zealand
| | - James M. Bier
- School of Engineering
- Faculty of Science and Engineering
- University of Waikato
- Hamilton 3240, New Zealand
| |
Collapse
|
44
|
Abstract
β-lactam group of antibiotics is the most widely used therapeutic molecules for treating bacterial infections. The main mode of bacterial resistance to β-lactams is by β-lactamases. In the present study, we report our results on the role of cation-π interactions in β-lactamases and their environmental preferences. The number of interactions formed by arginine is higher than lysine in the cationic group, while tyrosine is comparatively higher than phenylalanine and tryptophan in the π group. Our results indicate that cation-π interactions might play an important role in the global conformational stability of β-lactamases.
Collapse
|
45
|
Borozan SZ, Dimitrijević BP, Stojanović SĐ. Cation−π interactions in high resolution protein−RNA complex crystal structures. Comput Biol Chem 2013; 47:105-12. [DOI: 10.1016/j.compbiolchem.2013.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/01/2013] [Accepted: 08/19/2013] [Indexed: 12/27/2022]
|
46
|
Sánchez JM, Nolan V, Perillo MA. β-Galactosidase at the membrane–water interface: A case of an active enzyme with non-native conformation. Colloids Surf B Biointerfaces 2013; 108:1-7. [DOI: 10.1016/j.colsurfb.2013.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/01/2022]
|
47
|
The Role of Aromatic-Aromatic Interactions in Strand-Strand Stabilization of β-Sheets. J Mol Biol 2013; 425:3522-35. [PMID: 23810905 DOI: 10.1016/j.jmb.2013.06.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 11/21/2022]
Abstract
Aromatic-aromatic interactions have long been believed to play key roles in protein structure, folding, and binding functions. However, we still lack full understanding of the contributions of aromatic-aromatic interactions to protein stability and the timing of their formation during folding. Here, using an aromatic ladder in the β-barrel protein, cellular retinoic acid-binding protein 1 (CRABP1), as a case study, we find that aromatic π stacking plays a greater role in the Phe65-Phe71 cross-strand pair, while in another pair, Phe50-Phe65, hydrophobic interactions are dominant. The Phe65-Phe71 pair spans β-strands 4 and 5 in the β-barrel, which lack interstrand hydrogen bonding, and we speculate that it compensates energetically for the absence of strand-strand backbone interactions. Using perturbation analysis, we find that both aromatic-aromatic pairs form after the transition state for folding of CRABP1, thus playing a role in the final stabilization of the β-sheet rather than in its nucleation as had been earlier proposed. The aromatic interaction between strands 4 and 5 in CRABP1 is highly conserved in the intracellular lipid-binding protein (iLBP) family, and several lines of evidence combine to support a model wherein it acts to maintain barrel structure while allowing the dynamic opening that is necessary for ligand entry. Lastly, we carried out a bioinformatics analysis and found 51 examples of aromatic-aromatic interactions across non-hydrogen-bonded β-strands outside the iLBPs, arguing for the generality of the role played by this structural motif.
Collapse
|
48
|
Lavanya P, Ramaiah S, Anbarasu A. Influence of C-H...O interactions on the structural stability of β-lactamases. J Biol Phys 2013; 39:649-63. [PMID: 23996409 DOI: 10.1007/s10867-013-9324-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/26/2013] [Indexed: 01/31/2023] Open
Abstract
β-Lactamases produced by pathogenic bacteria cleave β-lactam antibiotics and render them ineffective. Understanding the principles that govern the structural stability of β-lactamases requires elucidation of the nature of the interactions that are involved in stabilization. In the present study, we systematically analyze the influence of CH...O interactions on determining the specificity and stability of β-lactamases in relation to environmental preferences. It is interesting to note that all the residues located in the active site of β-lactamases are involved in CH...O interactions. A significant percentage of CH...O interactions have a higher conservation score and short-range interactions are the predominant type of interactions in β-lactamases. These results will be useful in understanding the stability patterns of β-lactamases.
Collapse
Affiliation(s)
- P Lavanya
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | | | | |
Collapse
|
49
|
Non-canonical H-bonds in β-lactamases: importance of C–H···π interactions. J Biol Inorg Chem 2013; 18:539-45. [DOI: 10.1007/s00775-013-0998-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 03/17/2013] [Indexed: 10/27/2022]
|
50
|
Anitha P, Sivasakthi V, Lavanya P, Bag S, Kumar KM, Anbarasu A, Ramaiah S. Arginine and Lysine interactions with π residues in metalloproteins. Bioinformation 2012; 8:820-6. [PMID: 23139592 PMCID: PMC3488845 DOI: 10.6026/97320630008820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 08/20/2012] [Indexed: 11/23/2022] Open
Abstract
Metalloproteins have many different functions in cells such as enzymes; signal transduction, transport and storage proteins. About one third of all proteins require metals to carry out their functions. In the present study we have analyzed the roles played by Arg and Lys (cationic side chains) interactions with π (Phe, Tyr or Trp) residues and their role in the structural stability of metalloproteins. These interactions might play an important role in the global conformational stability in metalloproteins. In spite of its lower natural occurrence (1.76%) the number of Trp residues involved in energetically significant interactions is higher in metalloproteins.
Collapse
Affiliation(s)
- Parimelzaghan Anitha
- Bioinformatics Division, School of Biosciences & Technology, VIT University, Vellore-632014, India
| | - Vaideeswaran Sivasakthi
- Bioinformatics Division, School of Biosciences & Technology, VIT University, Vellore-632014, India
| | - Pandian Lavanya
- Bioinformatics Division, School of Biosciences & Technology, VIT University, Vellore-632014, India
| | - Susmita Bag
- Bioinformatics Division, School of Biosciences & Technology, VIT University, Vellore-632014, India
| | - Kalavathi Murugan Kumar
- Bioinformatics Division, School of Biosciences & Technology, VIT University, Vellore-632014, India
| | - Anand Anbarasu
- Bioinformatics Division, School of Biosciences & Technology, VIT University, Vellore-632014, India
| | - Sudha Ramaiah
- Bioinformatics Division, School of Biosciences & Technology, VIT University, Vellore-632014, India
| |
Collapse
|