1
|
Shaneh A, Purisima EO, Salavati R, Sulea T. Structural Studies of Trypanosoma brucei RNA Editing Ligases and Their Binding Partner Proteins. Biochemistry 2016; 55:2319-31. [PMID: 27031688 DOI: 10.1021/acs.biochem.5b01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To study the mechanism of ligating nicked RNA strands, we conducted molecular dynamics simulations of Trypanosoma brucei RNA editing ligases L1 and L2 complexed with double-stranded RNA (dsRNA) fragments. In each resulting model, a Mg(2+) ion coordinates the 5'-PO4 of the nicked nucleotide and the 3'-OH of the terminal nucleotide for a nucleophilic reaction consistent with the postulated step 3 chemistry of the ligation mechanism. Moreover, coordination of the 3'-OH to the Mg(2+) ion may lower its pKa, thereby rendering it a more effective nucleophile as an oxyanion. Thus, Mg(2+) may play a twofold role: bringing the reactants into the proximity of each other and activating the nucleophile. We also conducted solvated interaction energy calculations to explore whether ligation specificities can be correlated to ligase-dsRNA binding affinity changes. The calculated dsRNA binding affinities are stronger for both L1 and L2 when the terminal nucleotide is changed from cytosine to guanine, in line with their experimentally measured ligation specificities. Because the ligation mechanism is also influenced by interactions of the ligase with partner proteins from the editosome subcomplex, we also modeled the structure of the RNA-bound L2 in complex with the oligonucleotide binding (OB) domain of largest editosome interacting protein A1. The resulting L2-dsRNA-A1 model, which is consistent with mutagenesis and binding data recorded to date, provides the first atomic-level glimpse of plausible interactions around the RNA ligation site in the presence of an OB domain presented in-trans to a nucleic acid ligase.
Collapse
Affiliation(s)
- Alireza Shaneh
- Institute of Parasitology, McGill University , 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, H9X 3V9 Quebec, Canada.,McGill Centre for Bioinformatics, McGill University , Bellini Building, 3649 Promenade Sir William Osler, Montreal, H3G 0B1 Quebec, Canada
| | - Enrico O Purisima
- Human Health Therapeutics, National Research Council Canada , 6100 Royalmount Avenue, Montreal, H4P 2R2 Quebec, Canada.,Department of Biochemistry, McGill University , McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6 Quebec, Canada.,McGill Centre for Bioinformatics, McGill University , Bellini Building, 3649 Promenade Sir William Osler, Montreal, H3G 0B1 Quebec, Canada
| | - Reza Salavati
- Institute of Parasitology, McGill University , 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, H9X 3V9 Quebec, Canada.,Department of Biochemistry, McGill University , McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6 Quebec, Canada.,McGill Centre for Bioinformatics, McGill University , Bellini Building, 3649 Promenade Sir William Osler, Montreal, H3G 0B1 Quebec, Canada
| | - Traian Sulea
- Institute of Parasitology, McGill University , 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, H9X 3V9 Quebec, Canada.,Human Health Therapeutics, National Research Council Canada , 6100 Royalmount Avenue, Montreal, H4P 2R2 Quebec, Canada
| |
Collapse
|
2
|
Mehta V, Sen R, Moshiri H, Salavati R. Mutational analysis of Trypanosoma brucei RNA editing ligase reveals regions critical for interaction with KREPA2. PLoS One 2015; 10:e0120844. [PMID: 25790471 PMCID: PMC4366279 DOI: 10.1371/journal.pone.0120844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/10/2015] [Indexed: 12/04/2022] Open
Abstract
The Trypanosoma brucei parasite causes the vector-borne disease African sleeping sickness. Mitochondrial mRNAs of T. brucei undergo posttranscriptional RNA editing to make mature, functional mRNAs. The final step of this process is catalyzed by the essential ligase, T. brucei RNA Editing Ligase 1 (TbREL1) and the closely related T. brucei RNA Editing Ligase 2 (TbREL2). While other ligases such as T7 DNA ligase have both a catalytic and an oligonucleotide/oligosaccharide-binding (OB)-fold domain, T. brucei RNA editing ligases contain only the catalytic domain. The OB-fold domain, which is required for interaction with the substrate RNA, is provided in trans by KREPA2 (for TbREL1) and KREPA1 (for TbREL2). KREPA2 enhancement of TbREL1 ligase activity is presumed to occur via an OB-fold-mediated increase in substrate specificity and catalysis. We characterized the interaction between TbREL1 and KREPA2 in vitro using full-length, truncated, and point-mutated ligases. As previously shown, our data indicate strong, specific stimulation of TbREL1 catalytic activity by KREPA2. We narrowed the region of contact to the final 59 C-terminal residues of TbREL1. Specifically, the TbREL1 C-terminal KWKE (441–444) sequence appear to coordinate the KREPA2-mediated enhancement of TbREL1 activities. N-terminal residues F206, T264 and Y275 are crucial for the overall activity of TbREL1, particularly for F206, a mutation of this residue also disrupts KREPA2 interaction. Thus, we have identified the critical TbREL1 regions and amino acids that mediate the KREPA2 interaction.
Collapse
Affiliation(s)
- Vaibhav Mehta
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G1Y6, Canada
| | - Rajashree Sen
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G1Y6, Canada
| | - Houtan Moshiri
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G1Y6, Canada
| | - Reza Salavati
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G1Y6, Canada
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Montreal, Quebec, H9X3V9, Canada
- McGill Centre for Bioinformatics, McGill University, Duff Medical Building, 3775 University Street, Montreal, Quebec, H3A2B4, Canada
- * E-mail:
| |
Collapse
|
3
|
Moshiri H, Acoca S, Kala S, Najafabadi HS, Hogues H, Purisima E, Salavati R. Naphthalene-based RNA editing inhibitor blocks RNA editing activities and editosome assembly in Trypanosoma brucei. J Biol Chem 2011; 286:14178-89. [PMID: 21378165 DOI: 10.1074/jbc.m110.199646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RNA editing, catalyzed by the multiprotein editosome complex, is an essential step for the expression of most mitochondrial genes in trypanosomatid pathogens. It has been shown previously that Trypanosoma brucei RNA editing ligase 1 (TbREL1), a core catalytic component of the editosome, is essential in the mammalian life stage of these parasitic pathogens. Because of the availability of its crystal structure and absence from human, the adenylylation domain of TbREL1 has recently become the focus of several studies for designing inhibitors that target its adenylylation pocket. Here, we have studied new and existing inhibitors of TbREL1 to better understand their mechanism of action. We found that these compounds are moderate to weak inhibitors of adenylylation of TbREL1 and in fact enhance adenylylation at higher concentrations of protein. Nevertheless, they can efficiently block deadenylylation of TbREL1 in the editosome and, consequently, result in inhibition of the ligation step of RNA editing. Further experiments directly showed that the studied compounds inhibit the interaction of the editosome with substrate RNA. This was supported by the observation that not only the ligation activity of TbREL1 but also the activities of other editosome proteins such as endoribonuclease, terminal RNA uridylyltransferase, and uridylate-specific exoribonuclease, all of which require the interaction of the editosome with the substrate RNA, are efficiently inhibited by these compounds. In addition, we found that these compounds can interfere with the integrity and/or assembly of the editosome complex, opening the exciting possibility of using them to study the mechanism of assembly of the editosome components.
Collapse
Affiliation(s)
- Houtan Moshiri
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec H3G1Y6, Canada
| | | | | | | | | | | | | |
Collapse
|