1
|
Lasham J, Djurabekova A, Zickermann V, Vonck J, Sharma V. Role of Protonation States in the Stability of Molecular Dynamics Simulations of High-Resolution Membrane Protein Structures. J Phys Chem B 2024; 128:2304-2316. [PMID: 38430110 PMCID: PMC11389979 DOI: 10.1021/acs.jpcb.3c07421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Classical molecular dynamics (MD) simulations provide unmatched spatial and time resolution of protein structure and function. However, the accuracy of MD simulations often depends on the quality of force field parameters and the time scale of sampling. Another limitation of conventional MD simulations is that the protonation states of titratable amino acid residues remain fixed during simulations, even though protonation state changes coupled to conformational dynamics are central to protein function. Due to the uncertainty in selecting protonation states, classical MD simulations are sometimes performed with all amino acids modeled in their standard charged states at pH 7. Here, we performed and analyzed classical MD simulations on high-resolution cryo-EM structures of two large membrane proteins that transfer protons by catalyzing protonation/deprotonation reactions. In simulations performed with titratable amino acids modeled in their standard protonation (charged) states, the structure diverges far from its starting conformation. In comparison, MD simulations performed with predetermined protonation states of amino acid residues reproduce the structural conformation, protein hydration, and protein-water and protein-protein interactions of the structure much better. The results support the notion that it is crucial to perform basic protonation state calculations, especially on structures where protonation changes play an important functional role, prior to the launch of any conventional MD simulations. Furthermore, the combined approach of fast protonation state prediction and MD simulations can provide valuable information about the charge states of amino acids in the cryo-EM sample. Even though accurate prediction of protonation states in proteinaceous environments currently remains a challenge, we introduce an approach of combining pKa prediction with cryo-EM density map analysis that helps in improving not only the protonation state predictions but also the atomic modeling of density data.
Collapse
Affiliation(s)
- Jonathan Lasham
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Amina Djurabekova
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
- HiLIFE Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Wu X, Lee J, Brooks BR. Origin of pK a Shifts of Internal Lysine Residues in SNase Studied Via Equal-Molar VMMS Simulations in Explicit Water. J Phys Chem B 2016; 121:3318-3330. [PMID: 27700118 DOI: 10.1021/acs.jpcb.6b08249] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein internal ionizable groups can exhibit large shifts in pKa values. Although the environment and interaction changes have been extensively studied both experimentally and computationally, direct calculation of pKa values of these internal ionizable groups in explicit water is challenging due to energy barriers in solvent interaction and in conformational transition. The virtual mixture of multiple states (VMMS) method is a new approach designed to study chemical state equilibrium. This method constructs a virtual mixture of multiple chemical states in order to sample the conformational space of all states simultaneously and to avoid crossing energy barriers related to state transition. By applying VMMS to 25 variants of staphylococcal nuclease with lysine residues at internal positions, we obtained the pKa values of these lysine residues and investigated the physics underlining the pKa shifts. Our calculation results agree reasonably well with experimental measurements, validating the VMMS method for pKa calculation and providing molecular details of the protonation equilibrium for protein internal ionizable groups. Based on our analyses of protein conformation relaxation, lysine side chain flexibility, water penetration, and the microenvironment, we conclude that the hydrophobicity of the microenvironment around the lysine side chain (which affects water penetration differently for different protonation states) plays an important role in the pKa shifts.
Collapse
Affiliation(s)
- Xiongwu Wu
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Juyong Lee
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| |
Collapse
|
3
|
Asada T, Ando K, Bandyopadhyay P, Koseki S. Free Energy Contribution Analysis Using Response Kernel Approximation: Insights into the Acylation Reaction of a Beta-Lactamase. J Phys Chem B 2016; 120:9338-46. [PMID: 27501066 DOI: 10.1021/acs.jpcb.6b06104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A widely applicable free energy contribution analysis (FECA) method based on the quantum mechanical/molecular mechanical (QM/MM) approximation using response kernel approaches has been proposed to investigate the influences of environmental residues and/or atoms in the QM region on the free energy profile. This method can evaluate atomic contributions to the free energy along the reaction path including polarization effects on the QM region within a dramatically reduced computational time. The rate-limiting step in the deactivation of the β-lactam antibiotic cefalotin (CLS) by β-lactamase was studied using this method. The experimentally observed activation barrier was successfully reproduced by free energy perturbation calculations along the optimized reaction path that involved activation by the carboxylate moiety in CLS. It was found that the free energy profile in the QM region was slightly higher than the isolated energy and that two residues, Lys67 and Lys315, as well as water molecules deeply influenced the QM atoms associated with the bond alternation reaction in the acyl-enzyme intermediate. These facts suggested that the surrounding residues are favorable for the reactant complex and prevent the intermediate from being too stabilized to proceed to the following deacylation reaction. We have demonstrated that the free energy contribution analysis should be a useful method to investigate enzyme catalysis and to facilitate intelligent molecular design.
Collapse
Affiliation(s)
- Toshio Asada
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan.,The Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
| | - Kanta Ando
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
| | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University , New Delhi, India 110067
| | - Shiro Koseki
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan.,The Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
| |
Collapse
|
4
|
Grigorenko BL, Khrenova MG, Nilov DK, Nemukhin AV, Švedas VK. Catalytic Cycle of Penicillin Acylase from Escherichia coli: QM/MM Modeling of Chemical Transformations in the Enzyme Active Site upon Penicillin G Hydrolysis. ACS Catal 2014. [DOI: 10.1021/cs5002898] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Bella L. Grigorenko
- Chemistry
Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
- Emanuel
Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119991, Russia
| | - Maria G. Khrenova
- Chemistry
Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Dmitry K. Nilov
- Belozersky
Institute of Physicochemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Alexander V. Nemukhin
- Chemistry
Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
- Emanuel
Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119991, Russia
| | - Vytas K. Švedas
- Belozersky
Institute of Physicochemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
- Faculty
of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73 Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|
5
|
Kamiya K, Baba T, Boero M, Matsui T, Negoro S, Shigeta Y. Nylon-Oligomer Hydrolase Promoting Cleavage Reactions in Unnatural Amide Compounds. J Phys Chem Lett 2014; 5:1210-1216. [PMID: 26274473 DOI: 10.1021/jz500323y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The active site of 6-aminohexanoate-dimer hydrolase, a nylon-6 byproduct-degrading enzyme with a β-lactamase fold, possesses a Ser112/Lys115/Tyr215 catalytic triad similar to the one of penicillin-recognizing family of serine-reactive hydrolases but includes a unique Tyr170 residue. By using a reactive quantum mechanics/molecular mechanics (QM/MM) approach, we work out its catalytic mechanism and related functional/structural specificities. At variance with other peptidases, we show that the involvement of Tyr170 in the enzyme-substrate interactions is responsible for a structural variation in the substrate-binding state. The acylation via a tetrahedral intermediate is the rate-limiting step, with a free-energy barrier of ∼21 kcal/mol, driven by the catalytic triad Ser112, Lys115, and Tyr215, acting as a nucleophile, general base, and general acid, respectively. The functional interaction of Tyr170 with this triad leads to an efficient disruption of the tetrahedral intermediate, promoting a conformational change of the substrate favorable for proton donation from the general acid.
Collapse
Affiliation(s)
- Katsumasa Kamiya
- †Center for Basic Education and Integrated Learning, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Takeshi Baba
- ‡Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Mauro Boero
- §Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS and University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Toru Matsui
- ∥RIKEN, Advanced Institute for Computational Science, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Seiji Negoro
- ⊥Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan
| | - Yasuteru Shigeta
- ‡Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- #CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 Japan
| |
Collapse
|
6
|
Tripathi R, Nair NN. Mechanism of acyl-enzyme complex formation from the Henry-Michaelis complex of class C β-lactamases with β-lactam antibiotics. J Am Chem Soc 2013; 135:14679-90. [PMID: 24010547 DOI: 10.1021/ja405319n] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacteria that cause most of the hospital-acquired infections make use of class C β-lactamase (CBL) among other enzymes to resist a wide spectrum of modern antibiotics and pose a major public health concern. Other than the general features, details of the defensive mechanism by CBL, leading to the hydrolysis of drug molecules, remain a matter of debate, in particular the identification of the general base and role of the active site residues and substrate. In an attempt to unravel the detailed molecular mechanism, we carried out extensive hybrid quantum mechanical/molecular mechanical Car-Parrinello molecular dynamics simulation of the reaction with the aid of the metadynamics technique. On this basis, we report here the mechanism of the formation of the acyl-enzyme complex from the Henry-Michaelis complex formed by β-lactam antibiotics and CBL. We considered two β-lactam antibiotics, namely, cephalothin and aztreonam, belonging to two different subfamilies. A general mechanism for the formation of a β-lactam antibiotic-CBL acyl-enzyme complex is elicited, and the individual roles of the active site residues and substrate are probed. The general base in the acylation step has been identified as Lys67, while Tyr150 aids the protonation of the β-lactam nitrogen through either the substrate carboxylate group or a water molecule.
Collapse
Affiliation(s)
- Ravi Tripathi
- Department of Chemistry, Indian Institute of Technology Kanpur , 208016 Kanpur, India
| | | |
Collapse
|
7
|
Tripathi R, Nair NN. Thermodynamic and Kinetic Stabilities of Active Site Protonation States of Class C β-Lactamase. J Phys Chem B 2012; 116:4741-53. [DOI: 10.1021/jp212186q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ravi Tripathi
- Department of Chemistry, Indian Institute of Technology, Kanpur, 208016 Kanpur,
India
| | - Nisanth N. Nair
- Department of Chemistry, Indian Institute of Technology, Kanpur, 208016 Kanpur,
India
| |
Collapse
|
8
|
Yao Y, Li ZS. New insights into the mechanism of the Schiff base hydrolysis catalyzed by type I dehydroquinate dehydratase from S. enterica: a theoretical study. Org Biomol Chem 2012; 10:7037-44. [DOI: 10.1039/c2ob25605c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|