1
|
Shulga DA, Tserkovnikova NA, Tarasov DN, Tovbin DG. Investigation of the tight binding mechanism of a new anticoagulant DD217 to factor Xa by means of molecular docking and molecular dynamics. J Biomol Struct Dyn 2022:1-12. [PMID: 35532097 DOI: 10.1080/07391102.2022.2072387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new promising drug candidate DD217 has been proposed recently as a potent anticoagulant acting on factor Xa (fXa) target. It exhibits the lowest concentration of doubling the prothrombin time among the known anticoagulants. In order to explain the efficacy of DD217 in terms of molecular interactions with its target we studied the hypothesis of the tight binding mechanism by means of molecular dynamics simulations and statistical analysis of the trajectory. The conducted analysis confirms the significant contributions to the MM/GBSA estimated binding free energy of the S4 pocket residues as well the crucial role of establishing the hydrogen bonds between the ligand and the backbone amides of Gly216 and Gly218 of the target. The simulation results support the hypothesis of the tight binding mechanism of DD217 to fXa.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dmitry A Shulga
- Department of Chemistry, Moscow State University, Moscow, Russia
| | - Natalia A Tserkovnikova
- Department of Kinetics and Catalysis, Institute of Chemical Physics of Russian, Academy of Sciences, Moscow, Russia
| | - Dmitry N Tarasov
- Department of Kinetics and Catalysis, Institute of Chemical Physics of Russian, Academy of Sciences, Moscow, Russia.,PharmaDiall LLC, Moscow, Russia
| | - Dmitry G Tovbin
- Department of Kinetics and Catalysis, Institute of Chemical Physics of Russian, Academy of Sciences, Moscow, Russia.,PharmaDiall LLC, Moscow, Russia
| |
Collapse
|
2
|
Zhang ZL, Chen C, Qu SY, Ding Q, Xu Q. Unexpected Dynamic Binding May Rescue the Binding Affinity of Rivaroxaban in a Mutant of Coagulation Factor X. Front Mol Biosci 2022; 9:877170. [PMID: 35601826 PMCID: PMC9117642 DOI: 10.3389/fmolb.2022.877170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
A novel coagulation factor X (FX) Tyr319Cys mutation (Y99C as chymotrypsin numbering) was identified in a patient with severe bleeding. Unlike the earlier reported Y99A mutant, this mutant can bind and cleave its specific chromogenetic substrate at a normal level, suggesting an intact binding pocket. Here, using molecular dynamics simulations and MM-PBSA calculations on a FX-rivaroxaban (RIV) complex, we confirmed a much stronger binding of RIV in Y99C than in Y99A on a molecular level, which is actually the average result of multiple binding poses in dynamics. Detailed structural analyses also indicated the moderate flexibility of the 99-loop and the importance of the flexible side chain of Trp215 in the different binding poses. This case again emphasizes that binding of ligands may not only be a dynamic process but also a dynamic state, which is often neglected in drug design and screening based on static X-ray structures. In addition, the computational results somewhat confirmed our hypothesis on the activated Tyr319Cys FX (Y99C FXa) with an impaired procoagulant function to bind inhibitors of FXa and to be developed into a potential reversal agent for novel oral anticoagulants (NOAC).
Collapse
Affiliation(s)
- Zhi-Li Zhang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Changming Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si-Ying Qu
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Collaborative Innovation Center of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qiulan Ding, ; Qin Xu,
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Qiulan Ding, ; Qin Xu,
| |
Collapse
|
3
|
Qu SY, Xu Q, Wu W, Li F, Li CD, Huang R, Ding Q, Wei DQ. An unexpected dynamic binding mode between coagulation factor X and Rivaroxaban reveals importance of flexibility in drug binding. Chem Biol Drug Des 2019; 94:1664-1671. [PMID: 31108011 DOI: 10.1111/cbdd.13568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 12/18/2022]
Abstract
Rivaroxaban (RIV) is a direct oral anticoagulant (DOAC) targeting activated coagulation factor X (FXa). An earlier study reported the F174A mutant of FXa resistant to a RIV-like inhibitor, Apixaban. In current study, the detailed molecular mechanism of the resistance has been explored by molecular dynamics simulations on the impaired interactions between RIV and FXa in the damaged S4 pocket of F174A mutant. Besides, an unexpected relative stable binding mode of S1'S1 was revealed, which required dynamic motions of Gln192 and Gln61 to allow the morpholinone moiety of RIV to shift into the S1' pocket and form strong interactions. These dynamic motions of RIV and critical residues might be important in drug design for direct inhibitors of coagulation factors.
Collapse
Affiliation(s)
- Si-Ying Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Dong Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ran Huang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Department of Materials Technology and Engineering, Research Institute of Zhejiang University-Taizhou, Taizhou, Zhejiang, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Abdel-Azeim S, Oliva R, Chermak E, De Cristofaro R, Cavallo L. Molecular Dynamics Characterization of Five Pathogenic Factor X Mutants Associated with Decreased Catalytic Activity. Biochemistry 2014; 53:6992-7001. [DOI: 10.1021/bi500770p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Safwat Abdel-Azeim
- Kaust
Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department
of Sciences and Technologies, University “Parthenope” of Naples, Centro Direzionale Isola C4, 80133 Naples, Italy
| | - Edrisse Chermak
- Kaust
Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Raimondo De Cristofaro
- Hemostasis
Research Centre, Institute of Internal Medicine and Geriatrics, Catholic University School of Medicine, Rome, Italy
| | - Luigi Cavallo
- Kaust
Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Dipartimento
di Chimica e Biologia, University of Salerno, Via Papa Giovanni Paolo II, I-84084 Fisciano, Italy
| |
Collapse
|
5
|
Ping J, Hao P, Li YX, Wang JF. Molecular dynamics studies on the conformational transitions of adenylate kinase: a computational evidence for the conformational selection mechanism. BIOMED RESEARCH INTERNATIONAL 2013; 2013:628536. [PMID: 23936827 PMCID: PMC3712241 DOI: 10.1155/2013/628536] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/13/2013] [Indexed: 12/22/2022]
Abstract
Escherichia coli adenylate kinase (ADK) is a monomeric phosphotransferase enzyme that catalyzes reversible transfer of phosphoryl group from ATP to AMP with a large-scale domain motion. The detailed mechanism for this conformational transition remains unknown. In the current study, we performed long time-scale molecular dynamics simulations on both open and closed states of ADK. Based on the structural analyses of the simulation trajectories, we detected over 20 times conformational transitions between the open and closed states of ADK and identified two novel conformations as intermediate states in the catalytic processes. With these findings, we proposed a possible mechanism for the large-scale domain motion of Escherichia coli ADK and its catalytic process: (1) the substrate free ADK adopted an open conformation; (2) ATP bound with LID domain closure; (3) AMP bound with NMP domain closure; (4) phosphoryl transfer occurred with ATP, and AMP converted into two ADPs, and no conformational transition was detected in the enzyme; (5) LID domain opened with one ADP released; (6) another ADP released with NMP domain open. As both open and closed states sampled a wide range of conformation transitions, our simulation strongly supported the conformational selection mechanism for Escherichia coli ADK.
Collapse
Affiliation(s)
- Jie Ping
- Pathogen Diagnostic Center, Institut Pasteur of Shanghai Chinese Academy of Sciences, Shanghai 200025, China
| | - Pei Hao
- Pathogen Diagnostic Center, Institut Pasteur of Shanghai Chinese Academy of Sciences, Shanghai 200025, China
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai 200235, China
| | - Yi-Xue Li
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai 200235, China
- Bioinformatics Center, Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing-Fang Wang
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai 200235, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Liu Y, Liu BY, Hao P, Li X, Li YX, Wang JF. π-π Stacking mediated drug-drug interactions in human CYP2E1. Proteins 2013; 81:945-54. [PMID: 23349037 DOI: 10.1002/prot.24260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/11/2013] [Indexed: 11/07/2022]
Abstract
Because of having many low molecular mass substrates, CYP2E1 is of particular interests to the pharmaceutical industry. Many evidences showed that this enzyme can adopt multiple substrates to significantly reduce the oxidation rate of the substrates. The detailed mechanism for this observation is still unclear. In the current study, we employed GPU-accelerated molecular dynamics simulations to study the multiple-binding mode of human CYP2E1, with an aim of offering a mechanistic explanation for the unexplained multiple-substrate binding. Our results showed that Thr303 and Phe478 were key factors for the substrate recognition and multiple-substrate binding. The former can form a significant hydrogen bond to recognize and position the substrate in the productive binding orientation in the active site. The latter acted as a mediator for the substrate communications via π-π stacking interactions. In the multiple-binding mode, the aforementioned π-π stacking interactions formed by the aromatic rings of both substrates and Phe478 drove the first substrate far away from the catalytic center, orienting in an additional binding position and going against the substrate metabolism. All these findings could give atomic insights into the detailed mechanism for the multiple-substrate binding in human CYP2E1, providing useful information for the drug metabolism mechanism and personalized use of clinical drugs.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
7
|
Scaffold-based pan-agonist design for the PPARα, PPARβ and PPARγ receptors. PLoS One 2012; 7:e48453. [PMID: 23119024 PMCID: PMC3485212 DOI: 10.1371/journal.pone.0048453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/26/2012] [Indexed: 12/25/2022] Open
Abstract
As important members of nuclear receptor superfamily, Peroxisome proliferator-activated receptors (PPAR) play essential roles in regulating cellular differentiation, development, metabolism, and tumorigenesis of higher organisms. The PPAR receptors have 3 identified subtypes: PPARα, PPARβ and PPARγ, all of which have been treated as attractive targets for developing drugs to treat type 2 diabetes. Due to the undesirable side-effects, many PPAR agonists including PPARα/γ and PPARβ/γ dual agonists are stopped by US FDA in the clinical trials. An alternative strategy is to design novel pan-agonist that can simultaneously activate PPARα, PPARβ and PPARγ. Under such an idea, in the current study we adopted the core hopping algorithm and glide docking procedure to generate 7 novel compounds based on a typical PPAR pan-agonist LY465608. It was observed by the docking procedures and molecular dynamics simulations that the compounds generated by the core hopping and glide docking not only possessed the similar functions as the original LY465608 compound to activate PPARα, PPARβ and PPARγ receptors, but also had more favorable conformation for binding to the PPAR receptors. The additional absorption, distribution, metabolism and excretion (ADME) predictions showed that the 7 compounds (especially Cpd#1) hold high potential to be novel lead compounds for the PPAR pan-agonist. Our findings can provide a new strategy or useful insights for designing the effective pan-agonists against the type 2 diabetes.
Collapse
|
8
|
Wang YJ, Wang JF, Ping J, Yu Y, Wang Y, Lian P, Li X, Li YX, Hao P. Computational studies on the substrate interactions of influenza A virus PB2 subunit. PLoS One 2012; 7:e44079. [PMID: 22957044 PMCID: PMC3434214 DOI: 10.1371/journal.pone.0044079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 07/30/2012] [Indexed: 12/28/2022] Open
Abstract
Influenza virus, which spreads around the world in seasonal epidemics and leads to large numbers of deaths every year, has several ribonucleoproteins in the central core of the viral particle. These viral ribonucleoproteins can specifically bind the conserved 3' and 5' caps of the viral RNAs with responsibility for replication and transcription of the viral RNA in the nucleus of infected cells. A fundamental question of most importance is that how the cap-binding proteins in the influenza virus discriminates between capped RNAs and non-capped ones. To get an answer, we performed molecular dynamics simulations and free energy calculations on the influenza A virus PB2 subunit, an important component of the RNP complexes, with a cap analog m7GTP. Our calculations showed that some key residues in the active site, such as Arg355, His357, Glu361 as well as Gln406, could offer significant hydrogen bonding and hydrophobic interactions with the guanine ring of the cap analog m7GTP to form an aromatic sandwich mechanism for the cap recognition and positioning in the active site. Subsequently, we applied this idea to a virtual screening procedure and identified 5 potential candidates that might be inhibitors against the PB2 subunit. Interestingly, 2 candidates Cpd1 and Cpd2 have been already reported to have inhibitory activities to the influenza virus cap-binding proteins. Further calculation also showed that they had comparatively higher binding affinities to the PB2 subunit than that of m7GTP. We believed that our findings could give an atomic insight into the deeper understanding of the cap recognition and binding mechanism, providing useful information for searching or designing novel drugs against influenza viruses.
Collapse
Affiliation(s)
- Ya-Jun Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Fang Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Bioinformation and Technology, Shanghai, China
| | - Jie Ping
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yao Yu
- Shanghai Center for Bioinformation and Technology, Shanghai, China
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ying Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Peng Lian
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Li
- Shanghai Center for Bioinformation and Technology, Shanghai, China
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Xue Li
- Shanghai Center for Bioinformation and Technology, Shanghai, China
- Bioinformatics Center, Key Laboratory of Systems Biology, Chinese Academy of Sciences, Shanghai, China
| | - Pei Hao
- Shanghai Center for Bioinformation and Technology, Shanghai, China
- Institute of Pasteur, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Wang Y, Wu XL, Wei DQ, Li YX, Wang JF. Autoinhibitory mechanism for the mutation-induced impaired FGF9 signaling. J Chem Inf Model 2012; 52:2422-9. [PMID: 22920789 DOI: 10.1021/ci3003045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fibroblast growth factor 9 (FGF9), an important member of the fibroblast growth factor (FGF) family, can bind with high affinity to FGFR3 in a heparin-dependent approach. In humans, the deletions and mutations resulting in dysfunction of the FGF9 signaling can cause human skeletal dysplasia and cancers. A mutation (S99N) in this protein has been identified to be associated with significantly impaired FGF signaling considered as a potential cause of synostoses syndrome. However, the detailed mechanism for this observation still remains unknown. In this study, we used molecular dynamics simulations and free energy calculations to study the interactions of FGF9(WT/S99N), FGFR3c, and heparin, with an aim of providing atomic sights into the detailed mechanism for the impaired FGF signaling caused by the S99N mutation. We found that the S99N mutation has a well-ordered C-terminal structure, which can reduce its homodimerization ability so as to break the monomer-dimer equilibrium in the FGF signaling, which is considered as a key factor to regulate extracellular matrix affinity and tissue diffusion in the FGF signaling pathway. The FGF9(WT) monomer can preferentially form a homodimer owing to its comparatively favorable binding free energy. In contrast, the FGF9(S99N) monomer is preferred to bind with the FGFR3c receptor to form an inactive complex, leading to impair FGF signaling. To support our computational findings, we also performed biochemical experiments, which confirm the computational results mentioned above. The impaired FGF signaling is believed to be a potential cause of human synostoses syndrome, implicating an important role for FGF9 in normal joint development.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Systems Biomedicine-Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | |
Collapse
|
10
|
Wang JF, Chou KC. Insights into the mutation-induced HHH syndrome from modeling human mitochondrial ornithine transporter-1. PLoS One 2012; 7:e31048. [PMID: 22292090 PMCID: PMC3266937 DOI: 10.1371/journal.pone.0031048] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/30/2011] [Indexed: 11/25/2022] Open
Abstract
Human mitochondrial ornithine transporter-1 is reported in coupling with the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, which is a rare autosomal recessive disorder. For in-depth understanding of the molecular mechanism of the disease, it is crucially important to acquire the 3D structure of human mitochondrial ornithine transporter-1. Since no such structure is available in the current protein structure database, we have developed it via computational approaches based on the recent NMR structure of human mitochondrial uncoupling protein (Berardi MJ, Chou JJ, et al. Nature 2011, 476:109–113). Subsequently, we docked the ligand L-ornithine into the computational structure to search for the favorable binding mode. It was observed that the binding interaction for the most favorable binding mode is featured by six remarkable hydrogen bonds between the receptor and ligand, and that the most favorable binding mode shared the same ligand-binding site with most of the homologous mitochondrial carriers from different organisms, implying that the ligand-binding sites are quite conservative in the mitochondrial carriers family although their sequences similarity is very low with 20% or so. Moreover, according to our structural analysis, the relationship between the disease-causing mutations of human mitochondrial ornithine transporter-1 and the HHH syndrome can be classified into the following three categories: (i) the mutation occurs in the pseudo-repeat regions so as to change the region of the protein closer to the mitochondrial matrix; (ii) the mutation is directly affecting the substrate binding pocket so as to reduce the substrate binding affinity; (iii) the mutation is located in the structural region closer to the intermembrane space that can significantly break the salt bridge networks of the protein. These findings may provide useful insights for in-depth understanding of the molecular mechanism of the HHH syndrome and developing effective drugs against the disease.
Collapse
Affiliation(s)
- Jing-Fang Wang
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | | |
Collapse
|