Electronic sensors for alkali and alkaline earth cations based on Fullerene-C60 and silicon doped on C60 nanocages: a computational study.
J Mol Model 2022;
28:148. [PMID:
35552831 DOI:
10.1007/s00894-022-05147-2]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
In this research, we have reported the electrical sensitivity of pristine C60 and silicon doped on C60 (SiC59) nanocages as sensors that can be used for detecting the presence of alkali (Li+, Na+, K+) and alkaline earth (Be2+, Mg2+, Ca2+) cations. The computations are carried out at the B3LYP level of theory with a 6-31G(d) basis set. The atoms in molecules (AIM) and natural bond orbital (NBO) analyses are performed to evaluate the intermolecular interactions between cations and nanocages. The physical properties of the selected complexes are also analyzed by the frontier molecular orbital, energy gap, electronegativity, chemical hardness, softness, and other quantities such as work function, number of transferred electron, and dipole moment. The results show that the adsorption process is exothermic and with increasing the charge of cations, the adsorption energies enhance. Our findings also reveal a decrease in the energy gap along with an increase in the electrical conductivity of the respective complexes. Finally, the density of state calculations is presented to confirm the obtained results.
Collapse