1
|
Taghizadeh MS, Taherishirazi M, Niazi A, Afsharifar A, Moghadam A. Structure-guided design and cloning of peptide inhibitors targeting CDK9/cyclin T1 protein-protein interaction. Front Pharmacol 2024; 15:1327820. [PMID: 38808256 PMCID: PMC11130503 DOI: 10.3389/fphar.2024.1327820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/18/2024] [Indexed: 05/30/2024] Open
Abstract
CDK9 (cyclin-dependent kinase 9) plays a significant role in numerous pathological conditions, such as HIV-1 infection and cancer. The interaction between CDK9 and cyclin T1 is crucial for maintaining the kinase's active state. Therefore, targeting this protein-protein interaction offers a promising strategy for inhibiting CDK9. In this study, we aimed to design and characterize a library of mutant peptides based on the binding region of cyclin T1 to CDK9. Using Osprey software, a total of 7,776 mutant peptides were generated. After conducting a comprehensive analysis, three peptides, namely, mp3 (RAADVEGQRKRRE), mp20 (RAATVEGQRKRRE), and mp29 (RAADVEGQDKRRE), were identified as promising inhibitors that possess the ability to bind to CDK9 with high affinity and exhibit low free binding energy. These peptides exhibited favorable safety profiles and displayed promising dynamic behaviors. Notably, our findings revealed that the mp3 and mp29 peptides interacted with a conserved sequence in CDK9 (residues 60-66). In addition, by designing the structure of potential peptides in the plasmid vector pET28a (+), we have been able to pave the way for facilitating the process of their recombinant production in an Escherichia coli expression system in future studies. Predictions indicated good solubility upon overexpression, further supporting their potential for downstream applications. While these results demonstrate the promise of the designed peptides as blockers of CDK9 with high affinity, additional experimental studies are required to validate their biological activity and assess their selectivity. Such investigations will provide valuable insights into their therapeutic potential and pave the way for the future development of peptide-based inhibitors targeting the CDK9-cyclin T1 complex.
Collapse
Affiliation(s)
| | | | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Alireza Afsharifar
- Plant Virology Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| |
Collapse
|
2
|
Gao G, Li J, Cao Y, Li X, Qian Y, Wang X, Li M, Qiu Y, Wu T, Wang L, Fang M. Design, synthesis, and biological evaluation of novel 4,4'-bipyridine derivatives acting as CDK9-Cyclin T1 protein-protein interaction inhibitors against triple-negative breast cancer. Eur J Med Chem 2023; 261:115858. [PMID: 37837671 DOI: 10.1016/j.ejmech.2023.115858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Cyclin-dependent kinase 9 (CDK9) is directly related to tumor development in triple-negative breast cancer (TNBC) patients. Increased CDK9 is significantly associated with poor patient prognosis, while inhibiting CDK9-Cyclin T1 protein-protein interaction has recently been demonstrated as a new approach to TNBC treatment. Herein, we synthesized a novel class of 4,4'-bipyridine derivatives as potential CDK9-Cyclin T1 PPI inhibitors against TNBC. The represented compound B19 was found to be an excellent and selective CDK9-Cyclin T1 PPI inhibitor with good potency against TNBC cell lines while exhibiting lower toxicity in normal human cell lines than the positive compound I-CDK9. Notably, compound B19 showed good pharmacokinetic properties and excellent antitumor activity against TNBC (4T1) allografts in mice with a therapeutic index of more than 42 (TGI4T1(12.5 mg/kg,i.p.) = 63.1% vs. LD50 = 537 mg/kg). Moreover, the administration of B19 in combination with the PARP inhibitor Olaparib results in a significant increase of the antitumor activity in MDA-MB-231 cells relative to that of either single agent. To our knowledge, B19 is the first reported non-metal organic compound that acts as a selective CDK9-Cyclin T1 PPI inhibitor with in vivo antitumor activity, and it may be alone and in combination with PARP inhibitor Olaparib for TNBC therapy.
Collapse
Affiliation(s)
- Guiping Gao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China; Huaqiao University School of Medicine Science, Quanzhou, 362021, China
| | - Jiayi Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Yin Cao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Xudan Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Yuqing Qian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China; School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Xiumei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Mengyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Yingkun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Tong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China.
| | - Liqiang Wang
- Huaqiao University School of Medicine Science, Quanzhou, 362021, China.
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
3
|
Klein M. Targeting Protein-Protein Interactions to Inhibit Cyclin-Dependent Kinases. Pharmaceuticals (Basel) 2023; 16:ph16040519. [PMID: 37111276 PMCID: PMC10144709 DOI: 10.3390/ph16040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) play diverse and critical roles in normal cells and may be exploited as targets in cancer therapeutic strategies. CDK4 inhibitors are currently approved for treatment in advanced breast cancer. This success has led to continued pursuit of targeting other CDKs. One challenge has been in the development of inhibitors that are highly selective for individual CDKs as the ATP-binding site is highly conserved across this family of proteins. Protein-protein interactions (PPI) tend to have less conservation amongst different proteins, even within protein families, making targeting PPI an attractive approach to improving drug selectivity. However, PPI can be challenging to target due to structural and physicochemical features of these interactions. A review of the literature specific to studies focused on targeting PPI involving CDKs 2, 4, 5, and 9 was conducted and is presented here. Promising lead molecules to target select CDKs have been discovered. None of the lead molecules discovered have led to FDA approval; however, the studies covered in this review lay the foundation for further discovery and develop of PPI inhibitors for CDKs.
Collapse
Affiliation(s)
- Mark Klein
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Healthcare System, Minneapolis, MN 55417, USA
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Cheng SS, Qu YQ, Wu J, Yang GJ, Liu H, Wang W, Huang Q, Chen F, Li G, Wong CY, Wong VKW, Ma DL, Leung CH. Inhibition of the CDK9-cyclin T1 protein-protein interaction as a new approach against triple-negative breast cancer. Acta Pharm Sin B 2022; 12:1390-1405. [PMID: 35530158 PMCID: PMC9069406 DOI: 10.1016/j.apsb.2021.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Cyclin-dependent kinase 9 (CDK9) activity is correlated with worse outcomes of triple-negative breast cancer (TNBC) patients. The heterodimer between CDK9 with cyclin T1 is essential for maintaining the active state of the kinase and targeting this protein-protein interaction (PPI) may offer promising avenues for selective CDK9 inhibition. Herein, we designed and generated a library of metal complexes bearing the 7-chloro-2-phenylquinoline CˆN ligand and tested their activity against the CDK9-cyclin T1 PPI. Complex 1 bound to CDK9 via an enthalpically-driven binding mode, leading to disruption of the CDK9-cyclin T1 interaction in vitro and in cellulo. Importantly, complex 1 showed promising anti-metastatic activity against TNBC allografts in mice and was comparably active compared to cisplatin. To our knowledge, 1 is the first CDK9-cyclin T1 PPI inhibitor with anti-metastatic activity against TNBC. Complex 1 could serve as a new platform for the future design of more efficacious kinase inhibitors against cancer, including TNBC.
Collapse
Affiliation(s)
- Sha-Sha Cheng
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
| | - Yuan-Qing Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Jia Wu
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
| | - Guan-Jun Yang
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qi Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Feng Chen
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
| | - Guodong Li
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Chung-Hang Leung
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao 999078, China
| |
Collapse
|
5
|
Cheng S, Yang GJ, Wang W, Ma DL, Leung CH. Discovery of a tetrahydroisoquinoline-based CDK9-cyclin T1 protein–protein interaction inhibitor as an anti-proliferative and anti-migration agent against triple-negative breast cancer cells. Genes Dis 2021; 9:1674-1688. [PMID: 36157485 PMCID: PMC9485199 DOI: 10.1016/j.gendis.2021.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Shasha Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, PR China
| | - Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, PR China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, PR China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, PR China
- Corresponding author.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, PR China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, PR China
- Corresponding author.
| |
Collapse
|
6
|
Chaves EJF, Gomes da Cruz LE, Padilha IQM, Silveira CH, Araujo DAM, Rocha GB. Discovery of RTA ricin subunit inhibitors: a computational study using PM7 quantum chemical method and steered molecular dynamics. J Biomol Struct Dyn 2021; 40:5427-5445. [PMID: 33526002 DOI: 10.1080/07391102.2021.1878058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ricin is a potent toxin derived from the castor bean plant and comprises two subunits, RTA and RTB. Because of its cytotoxicity, ricin has alarmed world authorities for its potential use as a chemical weapon. Ricin also affects castor bean agribusiness, given the risk of animal and human poisoning. Over the years, many groups attempted to propose small-molecules that bind to the RTA active site, the catalytic chain. Despite such efforts, there is still no effective countermeasure against ricin poisoning. The computational study carried out in the present work renews the discussion about small-molecules that may inhibit this toxin. Here, a structure-based virtual screening protocol capable of discerning active RTA inhibitors from inactive ones was performed to screen over 2 million compounds from the ZINC database to find novel scaffolds that strongly bind into the active site of the RTA. Besides, a novel score method based on ligand undocking force profiles and semi-empirical quantum chemical calculations provided insights into the rescore of docking poses. Summing up, the filtering steps pointed out seven main compounds, with the SCF00-451 as a promising candidate to inhibit the killing activity of such potent phytotoxin.
Collapse
Affiliation(s)
| | | | | | | | | | - Gerd Bruno Rocha
- Department of Chemistry, Federal University of Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
7
|
Do PC, Lee EH, Le L. Steered Molecular Dynamics Simulation in Rational Drug Design. J Chem Inf Model 2018; 58:1473-1482. [DOI: 10.1021/acs.jcim.8b00261] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Phuc-Chau Do
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Eric H. Lee
- Department of Medicine and Division of Hematology and Oncology, Loma Linda University Medical Center, Loma Linda, California 92350, United States
| | - Ly Le
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
8
|
Lesitha Jeeva Kumari J, Jesu Jaya Sudan R, Sudandiradoss C. Evaluation of peptide designing strategy against subunit reassociation in mucin 1: A steered molecular dynamics approach. PLoS One 2017; 12:e0183041. [PMID: 28817726 PMCID: PMC5560680 DOI: 10.1371/journal.pone.0183041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/30/2017] [Indexed: 12/20/2022] Open
Abstract
Subunit reassociation in mucin 1, a breast cancer tumor marker, is reported as one of the critical factors for its cytoplasmic activation. Inhibition of its heterodimeric association would therefore result in loss of its function and alter disease progression. The present study aimed at evaluating peptide inhibitor designing strategies that may serve as antagonist against this receptor-ligand alliance. Several peptides and their derivatives were designed based on native residues, subunit interface, hydrogen bonding and secondary structure. Docking studies with the peptides were carried on the receptor subunit and their binding affinities were evaluated using steered molecular dynamics simulation and umbrella sampling. Our results showed that among all the different classes of peptides evaluated, the receptor based peptide showed the highest binding affinity. This result was concurrent with the experimental observation that the receptor-ligand alliance in mucin 1 is highly specific. Our results also show that peptide ligand against this subunit association is only stabilized through native residue inter-protein interaction irrespective of the peptide structure, peptide length and number of hydrogen bonds. Consistency in binding affinity, pull force and free energy barrier was observed with only the receptor derived peptides which resulted in favorable interprotein interactions at the interface. Several observations were made and discussed which will eventually lead to designing efficient peptide inhibitors against mucin 1 heterodimeric subunit reassociation.
Collapse
Affiliation(s)
- J. Lesitha Jeeva Kumari
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, India
| | - R. Jesu Jaya Sudan
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, India
| | - C. Sudandiradoss
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, India
- * E-mail:
| |
Collapse
|
9
|
Karadžić MŽ, Jevrić LR, Mandić AI, Markov SL, Podunavac-Kuzmanović SO, Kovačević SZ, Nikolić AR, Oklješa AM, Sakač MN, Penov-Gaši KM. Chemometrics approach based on chromatographic behavior, in silico characterization and molecular docking study of steroid analogs with biomedical importance. Eur J Pharm Sci 2017; 105:71-81. [DOI: 10.1016/j.ejps.2017.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/23/2017] [Accepted: 05/03/2017] [Indexed: 01/05/2023]
|
10
|
Abstract
CDK9 is a protein in constant development in cancer therapy. Herein we present an overview of the enzyme as a target for cancer therapy. We provide data on its characteristics and mechanism of action. In recent years, CDK9 inhibitors that have been designed with molecular modeling have demonstrated good antitumoral activity in vitro. Clinical studies of the drugs flavopiridol, dinaciclib, seliciclib, SNS-032 and RGB-286638 used as CDK9 inhibitors are also reviewed, with their additional targets and their relative IC50 values. Unfortunately, treatment with these drugs remains unsuccessful and involves many adverse effects. We could conclude that there are many small molecules that bind to CDK9, but their lack of selectivity against other CDKs do not allow them to get to the clinical use. However, drug designers currently have the tools needed to improve the selectivity of CDK9 inhibitors and to make successful treatment available to patients.
Collapse
Affiliation(s)
- Fatima Morales
- a Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University , Philadelphia , PA , USA
| | - Antonio Giordano
- a Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University , Philadelphia , PA , USA.,b Department of Medicine , Surgery and Neuroscience, University of Siena , Siena , Italy
| |
Collapse
|
11
|
A theoretical view of the C3d:CR2 binding controversy. Mol Immunol 2014; 64:112-22. [PMID: 25433434 DOI: 10.1016/j.molimm.2014.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 11/06/2014] [Indexed: 11/23/2022]
Abstract
The C3d:CR2(SCR1-2) interaction plays an important role in bridging innate and adaptive immunity, leading to enhanced antibody production at sites of complement activation. Over the past decade, there has been much debate over the binding mode of this interaction. An initial cocrystal structure (PDB: 1GHQ) was published in 2001, in which the only interactions observed were between the SCR2 domain of CR2 and a side-face of C3d whereas a cocrystal structure (PDB: 3OED) published in 2011 showed both the SCR1 and SCR2 domains of CR2 interacting with an acidic patch on the concave surface of C3d. The initial 1GHQ structure is at odds with the majority of existing biochemical data and the publication of the 3OED structure renewed uncertainty regarding the physiological relevance of 1GHQ, suggesting that crystallization may have been influenced by the presence of zinc acetate in the crystallization process. In our study, we used a variety of computational approaches to gain insight into the binding mode between C3d and CR2 and demonstrate that the binding site at the acidic patch (3OED) is electrostatically more favorable, exhibits better structural and dissociative stability, specifically at the SCR1 domain, and has higher binding affinity than the 1GHQ binding mode. We also observe that nonphysiological zinc ions enhance the formation of the C3d:CR2 complex at the side face of C3d (1GHQ) through increases in electrostatic favorability, intermolecular interactions, dissociative character and overall energetic favorability. These results provide a theoretical basis for the association of C3d:CR2 at the acidic cavity of C3d and provide an explanation for binding of CR2 at the side face of C3d in the presence of nonphysiological zinc ions.
Collapse
|
12
|
Gorham RD, Rodriguez W, Morikis D. Molecular analysis of the interaction between staphylococcal virulence factor Sbi-IV and complement C3d. Biophys J 2014; 106:1164-73. [PMID: 24606940 DOI: 10.1016/j.bpj.2014.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/29/2013] [Accepted: 01/23/2014] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus expresses numerous virulence factors that aid in immune evasion. The four-domain staphylococcal immunoglobulin binding (Sbi) protein interacts with complement component 3 (C3) and its thioester domain (C3d)-containing fragments. Recent structural data suggested two possible modes of binding of Sbi domain IV (Sbi-IV) to C3d, but the physiological binding mode remains unclear. We used a computational approach to provide insight into the C3d-Sbi-IV interaction. Molecular dynamics (MD) simulations showed that the first binding mode (PDB code 2WY8) is more robust than the second (PDB code 2WY7), with more persistent polar and nonpolar interactions, as well as conserved interfacial solvent accessible surface area. Brownian dynamics and steered MD simulations revealed that the first binding mode has faster association kinetics and maintains more stable intermolecular interactions compared to the second binding mode. In light of available experimental and structural data, our data confirm that the first binding mode represents Sbi-IV interaction with C3d (and C3) in a physiological context. Although the second binding mode is inherently less stable, we suggest a possible physiological role. Both binding sites may serve as a template for structure-based design of novel complement therapeutics.
Collapse
Affiliation(s)
- Ronald D Gorham
- Department of Bioengineering, University of California, Riverside, California
| | - Wilson Rodriguez
- Department of Bioengineering, University of California, Riverside, California
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, California.
| |
Collapse
|
13
|
In silico design of small molecule inhibitors of CDK9/cyclin T1 interaction. J Mol Graph Model 2014; 50:100-12. [PMID: 24769691 DOI: 10.1016/j.jmgm.2014.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 11/23/2022]
Abstract
In order to design a small molecule which potentially may interfere with CDK9/cyclin T1 complex formation and therefore influence its physiological role, a computational study of dynamics and druggability of CDK9 binding surface was conducted. Druggability estimates and pocket opening analyses indicated binding regions of cyclin T1 residues, Phe 146 and Lys 6, as starting points for the design of small molecules with the potential to inhibit the CDK9/cyclin T1 association. A pharmacophore model was created, based on these two residues and used to select potential inhibitor structures. Binding energies of the inhibitors were estimated with MM-GBSA. A good correlation of MM-GBSA energies and FTMap druggability predictions was observed. Amongst studied compounds a derivative of 2-amino-8-hydroxyquinoline was identified as the best potential candidate to inhibit CDK9/cyclin T1 interactions.
Collapse
|