1
|
Li Y, Pan Y, Yang X, Wang Y, Liu B, Zhang Y, Gao X, Wang Y, Zhou H, Li F. Unveiling the enigmatic role of MYH9 in tumor biology: a comprehensive review. Cell Commun Signal 2024; 22:417. [PMID: 39192336 PMCID: PMC11351104 DOI: 10.1186/s12964-024-01781-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Non-muscle myosin heavy chain IIA (MYH9), a member of the non-muscle myosin II (NM II) family, is widely expressed in cells. The interaction of MYH9 with actin in the cytoplasm can hydrolyze ATP, completing the conversion of chemical energy to mechanical motion. MYH9 participates in various cellular processes, such as cell adhesion, migration, movement, and even signal transduction. Mutations in MYH9 are often associated with autosomal dominant platelet disorders and kidney diseases. Over the past decade, tumor-related research has gradually revealed a close relationship between MYH9 and the occurrence and development of tumors. This article provides a review of the research progress on the role of MYH9 in cancer regulation. We also discussed the anti-cancer effects of MYH9 under special circumstances, as well as its regulation of T cell function. In addition, given the importance of MYH9 as a key hub in oncogenic signal transduction, we summarize the current therapeutic strategies targeting MYH9 as well as the ongoing challenges.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yujie Pan
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiangzhe Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yuxiong Wang
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China
| | - Bin Liu
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Xin Gao
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Honglan Zhou
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China
| | - Faping Li
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Duan H, Khan GJ, Shang LJ, Peng H, Hu WC, Zhang JY, Hua J, Cassandra A, Rashed MM, Zhai KF. Computational pharmacology and bioinformatics to explore the potential mechanism of Schisandra against atherosclerosis. Food Chem Toxicol 2021; 150:112058. [DOI: 10.1016/j.fct.2021.112058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
|
3
|
Sun X, Zhu M, Chen X, Jiang X. MYH9 Inhibition Suppresses TGF-β1-Stimulated Lung Fibroblast-to-Myofibroblast Differentiation. Front Pharmacol 2021; 11:573524. [PMID: 33519439 PMCID: PMC7838063 DOI: 10.3389/fphar.2020.573524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/05/2020] [Indexed: 12/04/2022] Open
Abstract
Previous cDNA microarray results showed that MYH9 gene expression levels are increased in TGF-β1-stimulated lung fibroblast. Recently, our proteomic results revealed that the expression levels of MYH9 protein are notably upregulated in lung tissues of bleomycin-treated rats. However, whether MYH9 plays a critical role in the differentiation of fibroblast remains unclear. Herein, we demonstrated that TGF-β1 increased MYH9 expression, and siRNA-mediated knockdown of MYH9 and pharmacological inhibition of MYH9 ATPase activity remarkably repressed TGF-β1-induced lung fibroblast-to-myofibroblast differentiation. TGF-β1-stimulated MYH9 induction might be via ALK5/Smad2/3 pathway but not through noncanonical pathways, including p38 mitogen-activated kinase, and Akt pathways in lung fibroblasts. Our results showed that MYH9 inhibition suppressed TGF-β1-induced lung fibroblast-to-myofibroblast differentiation, which provides valuable information for illuminating the pathological mechanisms of lung fibroblast differentiation, and gives clues for finding new potential target for pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Xionghua Sun
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Mei Zhu
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xihua Chen
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xiaogang Jiang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Khan GJ, Rizwan M, Abbas M, Naveed M, Boyang Y, Naeem MA, Khan S, Yuan S, Baig MMFA, Sun L. Pharmacological effects and potential therapeutic targets of DT-13. Biomed Pharmacother 2018; 97:255-263. [DOI: 10.1016/j.biopha.2017.10.101] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/16/2017] [Accepted: 10/21/2017] [Indexed: 12/21/2022] Open
|
5
|
Zhai K, Zheng J, Tang Y, Li F, Lv Y, Zhang Y, Gao Z, Qi J, Yu B, Kou J. The saponin D39 blocks dissociation of non-muscular myosin heavy chain IIA from TNF receptor 2, suppressing tissue factor expression and venous thrombosis. Br J Pharmacol 2017; 174:2818-2831. [PMID: 28547925 PMCID: PMC5554322 DOI: 10.1111/bph.13885] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Non-muscular myosin heavy chain IIA (NMMHC IIA) plays a key role in tissue factor expression and venous thrombosis. Natural products might inhibit thrombosis through effects on NMMHC IIA. Here, we have shown that a natural saponin, D39, from Liriope muscari exerted anti-thrombotic activity in vivo, by targeting NMMHC IIA. EXPERIMENTAL APPROACH Expression and activity of tissue factor in endothelial cells were analysed in vitro by Western blot and simplified chromogenic assays. Interactions between D39 and NMMHC IIA were assessed by serial affinity chromatography and molecular docking analysis. D39-dependent interactions between NMMHC IIA and TNF receptor 2 (TNFR2) were measured by immunofluorescence, co-immunoprecipitation and proximity ligation assays. Anti-thrombotic activity of D39 in vivo was evaluated with a model of inferior vena cava ligation injury in mice. KEY RESULTS D39 inhibited tissue factor expression and procoagulant activities in HUVECs and decreased thrombus weight in inferior vena cava-ligated mice dose-dependently. Serial affinity chromatography and molecular docking analysis suggested that D39 bound to NMMHC IIA. In HEK293T cells, D39 inhibited tissue factor expression evoked by NMMHC IIA overexpression. This effect was blocked by NMMHC IIA knockdown in HUVECs. D39 inhibited dissociation of NMMHC IIA from TNFR2, which subsequently modulated the Akt/GSK3β-NF-κB signalling pathways. CONCLUSIONS AND IMPLICATIONS D39 inhibited tissue factor expression and thrombus formation by modulating the Akt/GSK3β and NF-κB signalling pathways through NMMHC IIA. We identified a new natural product that targeted NMMHC IIA, as a potential treatment for thrombotic disorders and other vasculopathies.
Collapse
Affiliation(s)
- Ke‐feng Zhai
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
- Institute of Pharmaceutical Biotechnology, School of Biological and Food EngineeringSuzhou UniversitySuzhouChina
| | - Jin‐rong Zheng
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
| | - You‐mei Tang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
| | - Fang Li
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
| | - Yan‐ni Lv
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
| | - Yuan‐yuan Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
| | - Zhen Gao
- Department of Medicine‐Ather&LipoBaylor Colledge of MedicineHoustonTXUSA
| | - Jin Qi
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
| | - Bo‐yang Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
| | - Jun‐ping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
6
|
Zhang Y, Han Y, Zhao Y, Lv Y, Hu Y, Tan Y, Bi X, Yu B, Kou J. DT-13 Ameliorates TNF-α-Induced Vascular Endothelial Hyperpermeability via Non-Muscle Myosin IIA and the Src/PI3K/Akt Signaling Pathway. Front Immunol 2017; 8:925. [PMID: 28855900 PMCID: PMC5557769 DOI: 10.3389/fimmu.2017.00925] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022] Open
Abstract
DT-13(25(R,S)-ruscogenin-1-O-[β-d-glucopyranosyl-(1→2)][β-d-xylopyranosyl-(1→3)]-β-d-fucopyranoside) has been identified as an important factor in TNF-α-induced vascular inflammation. However, the effect of DT-13 on TNF-α-induced endothelial permeability and the potential molecular mechanisms remain unclear. Hence, this study was undertaken to elucidate the protective effect of DT-13 on TNF-α-induced endothelial permeability and the underlying mechanisms in vivo and in vitro. The in vivo results showed that DT-13 could ameliorate endothelial permeability in mustard oil-induced plasma leakage in the skin and modulate ZO-1 organization. In addition, the in vitro results showed that pretreatment with DT-13 could increase the transendothelial electrical resistance value and decrease the sodium fluorescein permeability coefficient. Moreover, DT-13 altered the mRNA and protein levels of ZO-1 as determined by real-time PCR, Western blotting, and immunofluorescence analyses. DT-13 treatment decreased the phosphorylations of Src, PI3K, and Akt in TNF-α-treated human umbilical vein endothelial cells (HUVECs). Further analyses with PP2 (10 µM, inhibitor of Src) indicated that DT-13 modulated endothelial permeability in TNF-α-induced HUVECs in an Src-dependent manner. LY294002 (10 µM, PI3K inhibitor) also had the same effect on DT-13 but did not affect phosphorylation of Src. Following decreased expression of non-muscle myosin IIA (NMIIA), the effect of DT-13 on the phosphorylations of Src, PI3K, and Akt was abolished. This study provides pharmacological evidence showing that DT-13 significantly ameliorated the TNF-α-induced vascular endothelial hyperpermeability through modulation of the Src/PI3K/Akt pathway and NMIIA, which play an important role in this process.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yuwei Han
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yazheng Zhao
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yanni Lv
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yang Hu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yisha Tan
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Xueyuan Bi
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Boyang Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Junping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
An optimized micro-assay of myosin II ATPase activity based on the molybdenum blue method and its application in screening natural product inhibitors. Chin J Nat Med 2017; 14:421-6. [PMID: 27473959 DOI: 10.1016/s1875-5364(16)30038-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 01/28/2023]
Abstract
Myosin II plays multiple roles in physiological and pathological functions through its ATPase activity. The present study was designed to optimize a micro-assay of myosin II ATPase activity based on molybdenum blue method, using a known myosin II ATPase inhibitor, blebbistatin. Several parameters were observed in the enzymatic reaction procedure, including the concentrations of the substrate (ATP) and calcium chloride, pH, and the reaction and incubation times. The proportion of coloration agent was also investigated. The sensitivity of this assay was compared with the malachite green method and bioluminescence method. Additionally, 20 natural compounds were studied for myosin II ATPase inhibitory activity using the optimized method. Our results showed that ATP at the concentration of 5 mmol·L(-1) and ammonium molybdate : stannous chloride at the ratio of 15 : 1 could greatly improve the sensitivity of this method. The IC50 of blebbistatin obtained by this method was consistent with literature. Compound 8 was screened with inhibitory activity on myosin II ATPase. The optimized method showed similar accuracy, lower detecting limit, and wider linear range, which could be a promising approach to screening myosin II ATPase inhibitors in vitro.
Collapse
|
8
|
Wang Y, Liu Q, Xu Y, Zhang Y, Lv Y, Tan Y, Jiang N, Cao G, Ma X, Wang J, Cao Z, Yu B, Kou J. Ginsenoside Rg1 Protects against Oxidative Stress-induced Neuronal Apoptosis through Myosin IIA-actin Related Cytoskeletal Reorganization. Int J Biol Sci 2016; 12:1341-1356. [PMID: 27877086 PMCID: PMC5118780 DOI: 10.7150/ijbs.15992] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress-induced cytoskeletal dysfunction of neurons has been implicated as a crucial cause of cell apoptosis or death in the central nervous system (CNS) diseases, such as neurodegenerative and psychiatric diseases. The application of neuroprotectants rescuing the neurons from cytoskeletal damage and apoptosis can be a potential treatment for these CNS diseases. Ginsenoside Rg1 (Rg1), one of the major active components of ginseng, has been reported possessing notable neuroprotective activities. However, there is rare report about its effect on cytoskeleton and its undergoing mechanism. The current study is to reveal the regulatory effects of Rg1 on cytoskeletal and morphological lesion in oxidative stress-induced neuronal apoptosis. The results demonstrated that pre-treatment with Rg1 (0.1-10 μM) attenuated hydrogen peroxide (H2O2)-induced neuronal apoptosis and oxidative stress through reducing the intracellular reactive oxygen species (ROS) production and methane dicarboxylic aldehyde (MDA) level. The Rg1 treatment also abolished H2O2-induced morphological changes, including cell rounding, membrane blebbing, neurite retraction and nuclei condensation, which were generated by myosin IIA-actin interaction. These effects were mediated via the down-regulation of caspase-3, ROCK1 (Rho-associated kinase1) activation and myosin light chain (MLC, Ser-19) phosphorylation. Furthermore, inhibiting myosin II activity with blebbistatin partly blocked the neuroprotective effects of Rg1. The computer-aided homology modelling revealed that Rg1 preferentially positioned in the actin binding cleft of myosin IIA and might block the binding of myosin IIA to actin filaments. Accordingly, the neuroprotective mechanism of Rg1 is related to the activity that inhibits myosin IIA-actin interaction and the caspase-3/ROCK1/MLC signaling pathway. These findings put some insights into the unique neuroprotective properties of Rg1 associated with the regulation of myosin IIA-actin cytoskeletal structure under oxidative stress and provide experimental evidence for Rg1 in CNS diseases.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Qian Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210002, China.; School of Dentistry, Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
| | - Yingqiong Xu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Yuanyuan Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Yanni Lv
- Pharmacy Department, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, China
| | - Yisha Tan
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Nan Jiang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Guosheng Cao
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Xiaonan Ma
- Cellular and Molecular Biology Center, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Jingrong Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Boyang Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Junping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| |
Collapse
|
9
|
Zhai K, Tang Y, Zhang Y, Li F, Wang Y, Cao Z, Yu J, Kou J, Yu B. NMMHC IIA inhibition impedes tissue factor expression and venous thrombosis via Akt/GSK3β-NF-κB signalling pathways in the endothelium. Thromb Haemost 2015; 114:173-85. [PMID: 25881103 DOI: 10.1160/th14-10-0880] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/19/2015] [Indexed: 01/29/2023]
Abstract
Non-muscle myosin heavy chain IIA (NMMHC IIA) has been shown to be involved in thrombus formation and inflammatory microparticle release in endothelial cells. However, the role of NMMHC IIA in regulating the expression of tissue factor (TF) and deep venous thrombosis remains to be elucidated. In the present study, endothelial cells were stimulated with tumour necrosis factor-α (TNF-α) to induce TF expression. Pretreatment with the NMMHC II inhibitor blebbistatin suppressed the mRNA and protein expressions as well as the procoagulant activity of TF in a dose-dependent manner. Blebbistatin enhanced Akt and GSK3β phosphorylation and inhibited NF-κB p65 nuclear translocation and IκBα degradation. These observations were similar to the effect of CHIR99021, a GSK3β inhibitor. TF downregulation by blebbistatin was antagonised by the PI3K inhibitor, wortmannin. Furthermore, siRNA knockdown of NMMHC IIA, but not IIB or IIC, inhibited TF expression, activated Akt/GSK3β and suppressed NF-κB signalling pathways, whereas the overexpression of NMMHC IIA increased TF expression. The binding of NMMHC IIA and TNF receptor 2 mediated signal internalisation in TNF-α-stimulated endothelial cells. Importantly, blebbistatin decreased endothelium NMMHC IIA and TF expression, deactivated GSK3β by inducing its phosphorylation, suppressed p65 nuclear translocation, and inhibited thrombus formation in a mouse deep venous thrombosis model.Our findings provide solid evidence that inhibition of NMMHC II, most likely NMMHC IIA, impedes TF expression and venous thrombosis via Akt/GSK3β-NF-κB signalling pathways in the endothelium both in vitro and in vivo. NMMHC IIA might be a potential novel target for the treatment of thrombotic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jun Yu
- Dr. Jun Yu, Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06519, USA, Tel.: +1 203 7372869, Fax: +1 203 7372290, E-mail:
| | - Junping Kou
- Dr. Junping Kou, State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, P. R. China, Tel./Fax: +86 25 86185158, E-mail:
| | | |
Collapse
|