1
|
Madheswaran M, Ventserova N, D’Abrosca G, Salzano G, Celauro L, Cazzaniga FA, Isernia C, Malgieri G, Moda F, Russo L, Legname G, Fattorusso R. Unfolding Mechanism and Fibril Formation Propensity of Human Prion Protein in the Presence of Molecular Crowding Agents. Int J Mol Sci 2024; 25:9916. [PMID: 39337404 PMCID: PMC11432716 DOI: 10.3390/ijms25189916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The pathological process of prion diseases implicates that the normal physiological cellular prion protein (PrPC) converts into misfolded abnormal scrapie prion (PrPSc) through post-translational modifications that increase β-sheet conformation. We recently demonstrated that HuPrP(90-231) thermal unfolding is partially irreversible and characterized by an intermediate state (β-PrPI), which has been revealed to be involved in the initial stages of PrPC fibrillation, with a seeding activity comparable to that of human infectious prions. In this study, we report the thermal unfolding characterization, in cell-mimicking conditions, of the truncated (HuPrP(90-231)) and full-length (HuPrP(23-231)) human prion protein by means of CD and NMR spectroscopy, revealing that HuPrP(90-231) thermal unfolding is characterized by two successive transitions, as in buffer solution. The amyloidogenic propensity of HuPrP(90-231) under crowded conditions has also been investigated. Our findings show that although the prion intermediate, structurally very similar to β-PrPI, forms at a lower temperature compared to when it is dissolved in buffer solution, in cell-mimicking conditions, the formation of prion fibrils requires a longer incubation time, outlining how molecular crowding influences both the equilibrium states of PrP and its kinetic pathways of folding and aggregation.
Collapse
Affiliation(s)
- Manoj Madheswaran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Nataliia Ventserova
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Gianluca D’Abrosca
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, 71122 Foggia, Italy
| | - Giulia Salzano
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Luigi Celauro
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Federico Angelo Cazzaniga
- Division of Neurology 5–Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Fabio Moda
- SSD Laboratory Medicine, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| |
Collapse
|
2
|
Xu R, Pan Q, Zhu G, Ye Y, Xin M, Wang Z, Wang S, Li W, Wei Y, Guo J, Zheng L. ThermoLink: Bridging disulfide bonds and enzyme thermostability through database construction and machine learning prediction. Protein Sci 2024; 33:e5097. [PMID: 39145402 PMCID: PMC11325166 DOI: 10.1002/pro.5097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 08/16/2024]
Abstract
Disulfide bonds, covalently formed by sulfur atoms in cysteine residues, play a crucial role in protein folding and structure stability. Considering their significance, artificial disulfide bonds are often introduced to enhance protein thermostability. Although an increasing number of tools can assist with this task, significant amounts of time and resources are often wasted owing to inadequate consideration. To enhance the accuracy and efficiency of designing disulfide bonds for protein thermostability improvement, we initially collected disulfide bond and protein thermostability data from extensive literature sources. Thereafter, we extracted various sequence- and structure-based features and constructed machine-learning models to predict whether disulfide bonds can improve protein thermostability. Among all models, the neighborhood context model based on the Adaboost-DT algorithm performed the best, yielding "area under the receiver operating characteristic curve" and accuracy scores of 0.773 and 0.714, respectively. Furthermore, we also found AlphaFold2 to exhibit high superiority in predicting disulfide bonds, and to some extent, the coevolutionary relationship between residue pairs potentially guided artificial disulfide bond design. Moreover, several mutants of imine reductase 89 (IR89) with artificially designed thermostable disulfide bonds were experimentally proven to be considerably efficient for substrate catalysis. The SS-bond data have been integrated into an online server, namely, ThermoLink, available at guolab.mpu.edu.mo/thermoLink.
Collapse
Affiliation(s)
- Ran Xu
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Qican Pan
- Zelixir Biotech Company Ltd, Shanghai, China
| | | | - Yilin Ye
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Minghui Xin
- School of Physics, Shandong University, Jinan, China
| | - Zechen Wang
- School of Physics, Shandong University, Jinan, China
| | - Sheng Wang
- Zelixir Biotech Company Ltd, Shanghai, China
| | - Weifeng Li
- School of Physics, Shandong University, Jinan, China
| | - Yanjie Wei
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Liangzhen Zheng
- Zelixir Biotech Company Ltd, Shanghai, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
3
|
Li Q, Zhu Y, Meng X, Tong HHY, Liu H. Experiment and molecular dynamics simulations reveal proanthocyanidin B2 and B3 can inhibit prion aggregation by different mechanisms. J Biomol Struct Dyn 2024; 42:2424-2436. [PMID: 37144732 DOI: 10.1080/07391102.2023.2209663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Prion diseases are a group of fatal neurodegenerative diseases caused by the misfolding and aggregation of prion protein (PrP), and the inhibition of PrP aggregation is one of the most effective therapeutic strategies. Proanthocyanidin B2 (PB2) and B3 (PB3), the effective natural antioxidants have been evaluated for the inhibition of amyloid-related protein aggregation. Since PrP has similar aggregation mechanism with other amyloid-related proteins, will PB2 and PB3 affect the aggregation of PrP? In this paper, experimental and molecular dynamics (MD) simulation methods were combined to investigate the influence of PB2 and PB3 on PrP aggregation. Thioflavin T assays showed PB2 and PB3 could inhibit PrP aggregation in a concentrate-dependent manner in vitro. To understand the underlying mechanism, we performed 400 ns all-atom MD simulations. The results suggested PB2 could stabilize the α2 C-terminus and the hydrophobic core of protein by stabilizing two important salt bridges R156-E196 and R156-D202, and consequently made global structure of protein more stable. Surprisingly, PB3 could not stabilize PrP, which may inhibit PrP aggregation through a different mechanism. Since dimerization is the first step of aggregation, will PB3 inhibit PrP aggregation by inhibiting the dimerization? To verify our assumption, we then explored the effect of PB3 on protein dimerization by performing 800 ns MD simulations. The results suggested PB3 could reduce the residue contacts and hydrogen bonds between two monomers, preventing dimerization process of PrP. The possible inhibition mechanism of PB2 and PB3 on PrP aggregation could provide useful information for drug development against prion diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Qin Li
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
| | - Yongchang Zhu
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Xiaoxiao Meng
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Henry H Y Tong
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
| | - Huanxiang Liu
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Pal S, Udgaonkar JB. Mutations of evolutionarily conserved aromatic residues suggest that misfolding of the mouse prion protein may commence in multiple ways. J Neurochem 2023; 167:696-710. [PMID: 37941487 DOI: 10.1111/jnc.16007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
The misfolding of the mammalian prion protein from its α-helix rich cellular isoform to its β-sheet rich infectious isoform is associated with several neurodegenerative diseases. The determination of the structural mechanism by which misfolding commences, still remains an unsolved problem. In the current study, native-state hydrogen exchange coupled with mass spectrometry has revealed that the N state of the mouse prion protein (moPrP) at pH 4 is in dynamic equilibrium with multiple partially unfolded forms (PUFs) capable of initiating misfolding. Mutation of three evolutionarily conserved aromatic residues, Tyr168, Phe174, and Tyr217 present at the interface of the β2-α2 loop and the C-terminal end of α3 in the structured C-terminal domain of moPrP significantly destabilize the native state (N) of the protein. They also reduce the free energy differences between the N state and two PUFs identified as PUF1 and PUF2**. It is shown that PUF2** in which the β2-α2 loop and the C-terminal end of α3 are disordered, has the same stability as the previously identified PUF2*, but to have a very different structure. Misfolding can commence from both PUF1 and PUF2**, as it can from PUF2*. Hence, misfolding can commence and proceed in multiple ways from structurally distinct precursor conformations. The increased extents to which PUF1 and PUF2** are populated at equilibrium in the case of the mutant variants, greatly accelerate their misfolding. The results suggest that the three aromatic residues may have been evolutionarily selected to impede the misfolding of moPrP.
Collapse
Affiliation(s)
- Suman Pal
- Indian Institute of Science Education and Research Pune, Pune, India
| | | |
Collapse
|
5
|
Cembran A, Fernandez-Funez P. Intrinsic determinants of prion protein neurotoxicity in Drosophila: from sequence to (dys)function. Front Mol Neurosci 2023; 16:1231079. [PMID: 37645703 PMCID: PMC10461008 DOI: 10.3389/fnmol.2023.1231079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Prion diseases are fatal brain disorders characterized by deposition of insoluble isoforms of the prion protein (PrP). The normal and pathogenic structures of PrP are relatively well known after decades of studies. Yet our current understanding of the intrinsic determinants regulating PrP misfolding are largely missing. A 3D subdomain of PrP comprising the β2-α2 loop and helix 3 contains high sequence and structural variability among animals and has been proposed as a key domain regulating PrP misfolding. We combined in vivo work in Drosophila with molecular dynamics (MD) simulations, which provide additional insight to assess the impact of candidate substitutions in PrP from conformational dynamics. MD simulations revealed that in human PrP WT the β2-α2 loop explores multiple β-turn conformations, whereas the Y225A (rabbit PrP-like) substitution strongly favors a 310-turn conformation, a short right-handed helix. This shift in conformational diversity correlates with lower neurotoxicity in flies. We have identified additional conformational features and candidate amino acids regulating the high toxicity of human PrP and propose a new strategy for testing candidate modifiers first in MD simulations followed by functional experiments in flies. In this review we expand on these new results to provide additional insight into the structural and functional biology of PrP through the prism of the conformational dynamics of a 3D domain in the C-terminus. We propose that the conformational dynamics of this domain is a sensitive measure of the propensity of PrP to misfold and cause toxicity. This provides renewed opportunities to identify the intrinsic determinants of PrP misfolding through the contribution of key amino acids to different conformational states by MD simulations followed by experimental validation in transgenic flies.
Collapse
Affiliation(s)
- Alessandro Cembran
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
6
|
Cysteine Pathogenic Variants of PMM2 Are Sensitive to Environmental Stress with Loss of Structural Stability. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:5964723. [PMID: 36743691 PMCID: PMC9891822 DOI: 10.1155/2023/5964723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 01/26/2023]
Abstract
Congenital disorders of glycosylation (CDG) are severe metabolic disorders caused by an imbalance in the glycosylation pathway. Phosphomannomutase2 (PMM2-CDG), the most prevalent CDG, is mainly due to the disorder of PMM2. Pathogenic variants in cysteine have been found in various diseases, and cysteine residues have a potential as therapeutic targets. PMM2 harbor six cysteines; the variants Cys9Tyr (C9Y) and Cys241Ser (C241S) of PMM2 have been identified to associate with CDG, but the underlying molecular mechanisms remain uncharacterized. Here, we purified PMM2 wild type (WT), C9Y, and C241S to investigate their structural characteristics and biophysical properties by spectroscopic experiments under physiological temperature and environmental stress. Notably, the variants led to drastic changes in the protein properties and were prone to aggregate at physiological temperature. Meanwhile, PMM2 was sensitive to oxidative stress, and the cysteine pathogenic variants led to obvious aggregate formation and a higher cellular apoptosis ratio under oxidative stress. Molecular dynamic simulations indicated that the pathogenic variants changed the core domain of homomeric PMM2 and subunit binding free energy. Moreover, we tested the potential drug targeting PMM2-celastrol in cell level and explained the result by molecular docking simulation. In this study, we delineated the pathological mechanism of the cysteine substitution in PMM2, which addressed the vital role of cysteine in PMM2 and provided novel insights into prevention and treatment strategies for PMM2-CDG.
Collapse
|
7
|
Kim DY, Shim KH, Bagyinszky E, An SSA. Prion Mutations in Republic of Republic of Korea, China, and Japan. Int J Mol Sci 2022; 24:ijms24010625. [PMID: 36614069 PMCID: PMC9820783 DOI: 10.3390/ijms24010625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Prion gene (PRNP) mutations are associated with diverse disease phenotypes, including familiar Creutzfeldt-Jakob Disease (CJD), Gerstmann-Sträussler-Scheinker disease (GSS), and fatal familial insomnia (FFI). Interestingly, PRNP mutations have been reported in patients diagnosed with Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease, and frontotemporal dementia. In this review, we describe prion mutations in Asian countries, including Republic of Republic of Korea, China, and Japan. Clinical phenotypes and imaging data related to these mutations have also been introduced in detail. Several prion mutations are specific to Asians and have rarely been reported in countries outside Asia. For example, PRNP V180I and M232R, which are rare in other countries, are frequently detected in Republic of Korea and Japan. PRNP T188K is common in China, and E200K is significantly more common among Libyan Jews in Israel. The A117V mutation has not been detected in any Asian population, although it is commonly reported among European GSS patients. In addition, V210I or octapeptide insertion is common among European CJD patients, but relatively rare among Asian patients. The reason for these differences may be geographical or ethical isolation. In terms of clinical phenotypes, V180I, P102L, and E200K present diverse clinical symptoms with disease duration, which could be due to other genetic and environmental influences. For example, rs189305274 in the ACO1 gene may be associated with neuroprotective effects in cases of V180I mutation, leading to longer disease survival. Additional neuroprotective variants may be possible in cases featuring the E200K mutation, such as KLKB1, KARS, NRXN2, LAMA3, or CYP4X1. E219K has been suggested to modify the disease course in cases featuring the P102L mutation, as it may result in the absence of prion protein-positive plaques in tissue stained with Congo red. However, these studies analyzed only a few patients and may be too preliminary. The findings need to be verified in studies with larger sample sizes or in other populations. It would be interesting to probe additional genetic factors that cause disease progression or act as neuroprotective factors. Further studies are needed on genetic modifiers working with prions and alterations from mutations.
Collapse
Affiliation(s)
- Dan Yeong Kim
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Kyu Hwan Shim
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Republic of Korea
- Correspondence: (E.B.); (S.S.A.A.)
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Correspondence: (E.B.); (S.S.A.A.)
| |
Collapse
|
8
|
Pal S, Udgaonkar JB. Evolutionarily Conserved Proline Residues Impede the Misfolding of the Mouse Prion Protein by Destabilizing an Aggregation-competent Partially Unfolded Form. J Mol Biol 2022; 434:167854. [PMID: 36228749 DOI: 10.1016/j.jmb.2022.167854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
The misfolding of the prion protein has been linked to several neurodegenerative diseases. Despite extensive studies, the mechanism of the misfolding process remains poorly understood. The present study structurally delineates the role of the conserved proline residues present in the structured C-terminal domain of the mouse prion protein (moPrP) in the misfolding process. It is shown that mutation of these Pro residues to Ala leads to destabilization of the native (N) state, and also to rapid misfolding. Using hydrogen-deuterium exchange (HDX) studies coupled with mass spectrometry (MS), it has been shown that the N state of moPrP is in rapid equilibrium with a partially unfolded form (PUF2*) at pH 4. It has been shown that the Pro to Ala mutations make PUF2* energetically more accessible from the N state by stabilizing it relative to the unfolded (U) state. The apparent rate constant of misfolding is found to be linearly proportional to the extent to which PUF2* is populated in equilibrium with the N state, strongly indicating that misfolding commences from PUF2*. It has also been shown that the Pro residues restrict the boundary of the structural core of the misfolded oligomers. Overall, this study highlights how the conserved proline residues control misfolding of the prion protein by modulating the stability of the partially unfolded form from which misfolding commences.
Collapse
Affiliation(s)
- Suman Pal
- Indian Institute of Science Education and Research, Pune, India
| | - Jayant B Udgaonkar
- Indian Institute of Science Education and Research, Pune, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.
| |
Collapse
|
9
|
Ning J, Ahmed S, Cheng G, Chen T, Wang Y, Peng D, Yuan Z. Analysis of the stability and affinity of BlaR-CTD protein to β-lactam antibiotics based on docking and mutagenesis studies. J Biol Eng 2019; 13:27. [PMID: 30976316 PMCID: PMC6441189 DOI: 10.1186/s13036-019-0157-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Owing to the thermal instability and low affinity of BlaR-CTD to some β-lactams, the receptor assay based on BlaR-CTD is limited in the detection of abundant variety of drugs and the result is often unstable. In this study, the three-dimensional structure of BlaR-CTD from Bacillus licheniformis ATCC14580 was constructed by homologous modeling based on the crystal structure of BlaR-CTD from B. licheniformis 749/I, and the binding sites of this protein to 40 β-lactams were also obtained by molecular docking. To improve the stability and affinity of the protein, 23 mutant proteins were designed based on docking and homologous alignment results as well as by inserting disulfide bond and building the salt bridge. The mutation was rationality evaluated by SIFT and PloyPhen2 software. The heterologous expressed and purified mutant proteins were then subjected to the activity and stability assay. It was shown that among all mutant proteins, I188K/S19C/G24C, A138E/R50C/Q147C and S190Y/E183C/I188K respectively exhibited a higher affinity to 33, 22 and 21 β-lactams than the wild-type protein, while I188K/S19C/G24C exhibited the best stability. This may due to that the conformation of the active site in mutant protein I188K/S19C/G24C changed, and the random coli in the surface of protein activity increased. Our study suggests a possible structure-function relationship on the stability and affinity of BlaR-CTD, which provides new insights into protein rational design study and lays a solid foundation for establishing the receptor-based screening assay for the detection of β-lactam residues.
Collapse
Affiliation(s)
- Jianan Ning
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, 430070 China
| | - Saeed Ahmed
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, 430070 China
| | - Guyue Cheng
- 2MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ting Chen
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yulian Wang
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, 430070 China
| | - Dapeng Peng
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zonghui Yuan
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, 430070 China.,2MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
10
|
Hildebrand N, Wei G, Köppen S, Colombi Ciacchi L. Simulated and experimental force spectroscopy of lysozyme on silica. Phys Chem Chem Phys 2018; 20:19595-19605. [PMID: 30009290 DOI: 10.1039/c8cp03747g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The force spectra of proteins detaching from oxide surfaces measured by atomic force microscopy (AFM) often present complex patterns of peaks, which are difficult to correlate with individual bond-breaking events at the atomic scale. In this work we rationalize experimental AFM force spectra of hen-egg-white lysozyme detaching from silica by means of all-atom steered molecular dynamics (SMD) simulations. In particular, we demonstrate that the native tertiary structure of lysozyme is preserved if, and only if, its four intramolecular disulfide bridges are intact. Otherwise, the protein pulled off the surface undergoes severe unfolding, which is well captured by SMD simulations in explicit solvent. Implicit solvent simulations, on the contrary, wrongly predict protein unfolding even in the presence of S-S bridges, due to the lack of additional structural stabilization provided by the water's hydrogen-bond network within and surrounding the protein. On the basis of our combined experimental and theoretical findings, we infer that the rugged force spectra characteristic of lysozyme/silica interfaces are not due to the successive breaking of internal disulfide bonds leading to partial unfolding events. Rather, they reflect the detachment of several molecules bound to the same AFM tip, each anchored to the surface via multiple hydrogen and ionic bonds.
Collapse
Affiliation(s)
- Nils Hildebrand
- Hybrid Materials Interfaces Group, Faculty Production Engineering, Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, 28359 Bremen, Germany.
| | | | | | | |
Collapse
|
11
|
Shi Q, Chen C, Zhang BY, Zhou W, Xiao K, Dong XP. Redox induces diverse effects on recombinant human wild-type PrP and mutated PrP with inserted or deleted octarepeats. Int J Mol Med 2018; 41:2413-2419. [PMID: 29393338 DOI: 10.3892/ijmm.2018.3441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 11/30/2017] [Indexed: 11/05/2022] Open
Abstract
Normal prion protein (PrP) contains two cysteines at amino acids 179 and 214, which may form intra‑ and interpeptide disulfide bonds. To determine the possible effects of this disulfide bridge on the biochemical features of PrP, prokaryotic recombinant human wild‑type PrP (PG5), and mutated PrPs with seven extra octarepeats (PG12) or with all five octarepeats removed (PG0), were subjected to redox in vitro. Sedimentation assays revealed a large portion of aggregation in redox‑treated PG5, but not in PG0 and PG12. Circular dichroism analysis detected increased β‑sheet and decreased α‑helix in PG5 subjected to redox, increased random‑coil and decreased β‑sheet in PG0, and increased random‑coil, but limited changes to β‑sheet content, in PG12. Thioflavin T fluorescence tests indicated that fluorescent value was increased in PG5 subjected to redox. In addition, proteinase K (PK) digestions indicated that PK resistance was stronger in PG12 and PG0 compared with in PG5; redox enhanced the PK resistance of all three PrP constructs, particularly PG0 and PG12. These data indicated that formation of a disulfide bond induces marked alterations in the secondary structure and biochemical characteristics of PrP. In addition, the octarepeat region within the PrP peptide markedly influences the effects of redox on the biochemical phenotypes of PrP, thus highlighting the importance of the number of octarepeats in the biological functions of PrP.
Collapse
Affiliation(s)
- Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Bao-Yun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Wei Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| |
Collapse
|
12
|
Zhou S, Liu X, An X, Yao X, Liu H. Molecular Dynamics Simulation Study on the Binding and Stabilization Mechanism of Antiprion Compounds to the "Hot Spot" Region of PrP C. ACS Chem Neurosci 2017; 8:2446-2456. [PMID: 28795797 DOI: 10.1021/acschemneuro.7b00214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Structural transitions in the prion protein from the cellular form, PrPC, into the pathological isoform, PrPSc, are regarded as the main cause of the transmissible spongiform encephalopathies, also known as prion diseases. Hence, discovering and designing effective antiprion drugs that can inhibit PrPC to PrPSc conversion is regarded as a promising way to cure prion disease. Among several strategies to inhibit PrPC to PrPSc conversion, stabilizing the native PrPC via specific binding is believed to be one of the valuable approaches and many antiprion compounds have been reported based on this strategy. However, the detailed mechanism to stabilize the native PrPC is still unknown. As such, to unravel the stabilizing mechanism of these compounds to PrPC is valuable for the further design and discovery of antiprion compounds. In this study, by molecular dynamics simulation method, we investigated the stabilizing mechanism of several antiprion compounds on PrPC that were previously reported to have specific binding to the "hot spot" region of PrPC. Our simulation results reveal that the stabilization mechanism of specific binding compounds can be summarized as (I) to stabilize both the flexible C-terminal of α2 and the hydrophobic core, such as BMD42-29 and GN8; (II) to stabilize the hydrophobic core, such as J1 and GJP49; (III) to stabilize the overall structure of PrPC by high binding affinity, as NPR-056. In addition, as indicated by the H-bond analysis and decomposition analysis of binding free energy, the residues N159 and Q160 play an important role in the specific binding of the studied compounds and all these compounds interact with PrPC in a similar way with the key interacting residues L130 in the β1 strand, P158, N159, Q160, etc. in the α1-β2 loop, and H187, T190, T191, etc. in the α2 C-terminus although the compounds have large structural difference. As a whole, our obtained results can provide some insights into the specific binding mechanism of main antiprion compounds to the "hot spot" region of PrPC at the molecular level and also provide guidance for effective antiprion drug design in the future.
Collapse
Affiliation(s)
- Shuangyan Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xuewei Liu
- State Key Laboratory of Applied Organic Chemistry and
Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiaoli An
- State Key Laboratory of Applied Organic Chemistry and
Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and
Department of Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Quality Research
in Chinese Medicine, Macau Institute for Applied Research in Medicine
and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Abstract
Prion diseases, like Alzheimer's disease and Parkinson disease, are rapidly progressive neurodegenerative disorders caused by misfolding followed by aggregation and accumulation of protein deposits in neuronal cells. Here we measure intramolecular polypeptide backbone reconfiguration as a way to understand the molecular basis of prion aggregation. Our hypothesis is that when reconfiguration is either much faster or much slower than bimolecular diffusion, biomolecular association is not stable, but as the reconfiguration rate becomes similar to the rate of biomolecular diffusion, the association is more stable and subsequent aggregation is faster. Using the technique of Trp-Cys contact quenching, we investigate the effects of various conditions on reconfiguration dynamics of the Syrian hamster and rabbit prion proteins. This protein exhibits behavior in all three reconfiguration regimes. We conclude that the hamster prion is prone to aggregation at pH 4.4 because its reconfiguration rate is slow enough to expose hydrophobic residues on the same time scale that bimolecular association occurs, whereas the rabbit sequence avoids aggregation by reconfiguring 10 times faster than the hamster sequence.
Collapse
|
14
|
Structural Modeling of Human Prion Protein's Point Mutations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:105-122. [DOI: 10.1016/bs.pmbts.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Menon S, Sengupta N. Perturbations in inter-domain associations may trigger the onset of pathogenic transformations in PrP(C): insights from atomistic simulations. MOLECULAR BIOSYSTEMS 2016; 11:1443-53. [PMID: 25855580 DOI: 10.1039/c4mb00689e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conversion of the predominantly α-helical cellular prion protein (PrP(C)) to the misfolded β-sheet enriched Scrapie form (PrP(Sc)) is a critical event in prion pathogenesis. However, the conformational triggers that lead to the isoform conversion (PrP(C) to PrP(Sc)) remain obscure, and conjectures about the role of unusually hydrophilic, short helix H1 of the C-terminal globular domain in the transition are varied. Helix H1 is anchored to helix H3 via a few stabilizing polar interactions. We have employed fully atomistic molecular dynamics simulations to study the effects triggered by a minor perturbation in the network of these non-bonded interactions in PrP(C). The elimination of just one of the key H1-H3 hydrogen bonds led to a cascade of conformational changes that are consistent with those observed in partially unfolded intermediates of PrP(C), with pathogenic mutations and in low pH environments. Our analyses reveal that the perturbation results in the enhanced conformational flexibility of the protein. The resultant enhancement in the dynamics leads to overall increased solvent exposure of the hydrophobic core residues and concomitant disruption of the H1-H3 inter-domain salt bridge network. This study lends credence to the hypothesis that perturbing the cooperativity of the stabilizing interactions in the PrP(C) globular domain can critically affect its dynamics and may lead to structural transitions of pathological relevance.
Collapse
Affiliation(s)
- Sneha Menon
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
| | | |
Collapse
|
16
|
Tao W, Yoon G, Cao P, Eom K, Park HS. β-sheet-like formation during the mechanical unfolding of prion protein. J Chem Phys 2015; 143:125101. [DOI: 10.1063/1.4931819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Weiwei Tao
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Gwonchan Yoon
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Department of Mechanical Engineering, Korea University, Seoul 136-701, South Korea
| | - Penghui Cao
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Kilho Eom
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Harold S. Park
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
17
|
Yang H, Liu L, Li J, Chen J, Du G. Rational Design to Improve Protein Thermostability: Recent Advances and Prospects. CHEMBIOENG REVIEWS 2015. [DOI: 10.1002/cben.201400032] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Benetti F, Biarnés X, Attanasio F, Giachin G, Rizzarelli E, Legname G. Structural determinants in prion protein folding and stability. J Mol Biol 2014; 426:3796-3810. [PMID: 25280897 DOI: 10.1016/j.jmb.2014.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/30/2014] [Accepted: 09/15/2014] [Indexed: 01/21/2023]
Abstract
Prions are responsible for a heterogeneous group of fatal neurodegenerative diseases, involving post-translational modifications of the cellular prion protein. Epidemiological studies on Creutzfeldt-Jakob disease, a prototype prion disorder, show a majority of cases being sporadic, while the remaining occurrences are either genetic or iatrogenic. The molecular mechanisms by which PrP(C) is converted into its pathological isoform have not yet been established. While point mutations and seeds trigger the protein to cross the energy barriers, thus causing genetic and infectious transmissible spongiform encephalopathies, respectively, the mechanism responsible for sporadic forms remains unclear. Since prion diseases are protein-misfolding disorders, we investigated prion protein folding and stability as functions of different milieus. Using spectroscopic techniques and atomistic simulations, we dissected the contribution of major structural determinants, also defining the energy landscape of prion protein. In particular, we elucidated (i) the essential role of the octapeptide region in prion protein folding and stability, (ii) the presence of a very enthalpically stable intermediate in prion-susceptible species, and (iii) the role of the disulfide bridge in prion protein folding.
Collapse
Affiliation(s)
- Federico Benetti
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy; Italian Institute of Technology, Scuola Internazionale Superiore di Studi Avanzati Unit, Via Bonomea 265, I-34136 Trieste, Italy
| | - Xevi Biarnés
- Department of Physics, Scuola Internazionale Superiore di Studi Avanzati, I-34136 Trieste, Italy
| | - Francesco Attanasio
- National Research Council, Institute of Biostructures and Bioimaging, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Gabriele Giachin
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
| | - Enrico Rizzarelli
- National Research Council, Institute of Biostructures and Bioimaging, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy; Italian Institute of Technology, Scuola Internazionale Superiore di Studi Avanzati Unit, Via Bonomea 265, I-34136 Trieste, Italy; Elettra - Sincrotrone Trieste S.C.p.A., AREA Science Park, I-34149 Basovizza Trieste, Italy.
| |
Collapse
|