1
|
Shimato T, Kasahara K, Higo J, Takahashi T. Effects of number of parallel runs and frequency of bias-strength replacement in generalized ensemble molecular dynamics simulations. PEERJ PHYSICAL CHEMISTRY 2019. [DOI: 10.7717/peerj-pchem.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background
The generalized ensemble approach with the molecular dynamics (MD) method has been widely utilized. This approach usually has two features. (i) A bias potential, whose strength is replaced during a simulation, is applied. (ii) Sampling can be performed by many parallel runs of simulations. Although the frequency of the bias-strength replacement and the number of parallel runs can be adjusted, the effects of these settings on the resultant ensemble remain unclear.
Method
In this study, we performed multicanonical MD simulations for a foldable mini-protein (Trp-cage) and two unstructured peptides (8- and 20-residue poly-glutamic acids) with various settings.
Results
As a result, running many short simulations yielded robust results for the Trp-cage model. Regarding the frequency of the bias-potential replacement, although using a high frequency enhanced the traversals in the potential energy space, it did not promote conformational changes in all the systems.
Collapse
Affiliation(s)
- Takuya Shimato
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kota Kasahara
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Junichi Higo
- Graduate School of Simulation Studies, University of Hyogo, Kobe, Hyogo, Japan
| | - Takuya Takahashi
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
2
|
Iwai R, Kasahara K, Takahashi T. Influence of various parameters in the replica-exchange molecular dynamics method: Number of replicas, replica-exchange frequency, and thermostat coupling time constant. Biophys Physicobiol 2018; 15:165-172. [PMID: 30250775 PMCID: PMC6145944 DOI: 10.2142/biophysico.15.0_165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/05/2018] [Indexed: 12/29/2022] Open
Abstract
The replica-exchange molecular dynamics (REMD) method has been used for conformational sampling of various biomolecular systems. To maximize sampling efficiency, some adjustable parameters must be optimized. Although it is agreed that shorter intervals between the replica-exchange attempts enhance traversals in the temperature space, details regarding the artifacts caused by these short intervals are controversial. In this study, we revisit this problem by performing REMD simulations on an alanine octapeptide in an implicit solvent. Fifty different sets of conditions, which are a combination of five replica-exchange periods, five different numbers of replicas, and two thermostat coupling time constants, were investigated. As a result, although short replica-exchange intervals enhanced the traversals in the temperature space, they led to artifacts in the ensemble average of the temperature, potential energy, and helix content. With extremely short replica-exchange intervals, i.e., attempted at every time step, the ensemble average of the temperature deviated from the thermostat temperature by ca. 7 K. Differences in the ensembles were observed even for larger replica-exchange intervals (between 100 and 1,000 steps). In addition, the shorter thermostat coupling time constant reduced the artifacts found when short replica-exchange intervals were used, implying that these artifacts are caused by insufficient thermal relaxation between the replica-exchange events. Our results will be useful to reduce the artifacts found in REMD simulations by adjusting some key parameters.
Collapse
Affiliation(s)
- Ryosuke Iwai
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Kota Kasahara
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Takuya Takahashi
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
3
|
Uchida Y, Nakamura S, Kouyama JI, Naiki K, Motoya D, Sugawara K, Inao M, Imai Y, Nakayama N, Tomiya T, Hedskog C, Brainard D, Mo H, Mochida S. Significance of NS5B Substitutions in Genotype 1b Hepatitis C Virus Evaluated by Bioinformatics Analysis. Sci Rep 2018; 8:8818. [PMID: 29892096 PMCID: PMC5995875 DOI: 10.1038/s41598-018-27291-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/10/2018] [Indexed: 01/03/2023] Open
Abstract
To evaluate the effects of HCV NS5B amino acid substitutions on treatment outcome in Ledipasvir (LDV)/Sofosbuvir (SOF) for Japanese patients with genotype 1b HCV infection, NS5B sequences were examined in i) seven patients experiencing virologic failure after LDV/SOF in real-world practice, ii) 109 SOF-naïve patients, iii) 165 patients enrolled in Phase-3 LDV/SOF trial. A218S and C316N were detected in all patients with viral relapse; the percentages of these substitutions in SOF-naïve patients were 64.2% and 55.0%, respectively. Genotype 1b HCV strains with NS5B-C316N mutation were located in the leaves different from those in which HCV strains without such substitutions were present on the phylogenetic tree. Structural modeling revealed that amino acid 218 was located on the surface of the NTP tunnel. Free energy analysis based on molecular dynamics simulations demonstrated that the free energy required to pass through the tunnel was larger for triphosphate SOF than for UTP in NS5B polymerase carrying A218S, but not in wild-type. However, no susceptibility change was observed for these substitutions to SOF in replicon assay. Furthermore, the SVR rate was 100% in patients enrolled the Phase-3 trial. In conclusion, NS5B A218S and C316N were detected in all patients who relapsed following LDV/SOF in real-world practice. These substitutions did not impact the overall SVR rate after LDV/SOF, however, further studies are needed to elucidate the impact of these substitutions.
Collapse
Affiliation(s)
- Yoshihito Uchida
- Department of Gastroenterology & Hepatology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Shugo Nakamura
- Faculty of Information Networking for Innovation and Design, Toyo University, Toyo, Japan
| | - Jun-Ichi Kouyama
- Department of Gastroenterology & Hepatology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kayoko Naiki
- Department of Gastroenterology & Hepatology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Daisuke Motoya
- Department of Gastroenterology & Hepatology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kayoko Sugawara
- Department of Gastroenterology & Hepatology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Mie Inao
- Department of Gastroenterology & Hepatology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yukinori Imai
- Department of Gastroenterology & Hepatology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Nobuaki Nakayama
- Department of Gastroenterology & Hepatology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Tomoaki Tomiya
- Department of Gastroenterology & Hepatology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | | | | | - Hongmei Mo
- Gilead Sciences, Inc., Foster City, California, USA
| | - Satoshi Mochida
- Department of Gastroenterology & Hepatology, Faculty of Medicine, Saitama Medical University, Saitama, Japan.
| |
Collapse
|
4
|
Ping Z, Zhou F, Lin X, Su H. Coupled Mutations-Enabled Glycerol Transportation in an Aquaporin Z Mutant. ACS OMEGA 2018; 3:4113-4122. [PMID: 31458647 PMCID: PMC6641515 DOI: 10.1021/acsomega.8b00126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/27/2018] [Indexed: 05/26/2023]
Abstract
Aquaporins are transmembrane channel proteins with key function being transportation of water or other small substrates. Escherichia coli Aqp Z transports water molecules only, whereas Glp F is permeable to glycerol. It is intriguing to explore the possibility to induce glycerol permeability in Aqp Z by targeted mutations. The Aqp Z mutants with mutated selectivity filter (SF) residues exhibit poor permeability for both glycerol and water. For addressing the complexity of protein systems, pair correlation information in protein sequence analyses is instructive to identify residues that are coupled by coevolution and motion. In this study, we analyze the correlation between residues and unravel the clustering patterns of coupled residues, beyond SF residues, in aquaglyceroporins (AQGPs). The identified coupled motifs are proposed to be sequenced into aquaporin (Aqp Z) to introduce glycerol permeability. These residues are located in the vicinity of SF region, C-loop, and M6-M7 linkage domain. Significant enlargement of SF pore size of the proposed Aqp Z mutant is observed by an all-atom replica exchange molecular dynamics simulation, which is critical to facilitate considerable glycerol passage as characterized in calculated free-energy landscapes. Clearly, the hidden connections among residues play crucial roles in water/glycerol selectivity. In contrast, single-site mutation-based scheme may even lead to undesirable effects in AQGPs, such as the blocking of water transportation by aromatic π-stacked gate. As demonstrated in this work, the pair correlation analysis guided rational mutagenesis provides a feasible strategy to modulate proteins' functions.
Collapse
Affiliation(s)
- Zhi Ping
- Institute
of Advanced Studies, Nanyang Technological
University, 60 Nanyang View, 639673 Singapore
| | - Feng Zhou
- Institute
of Advanced Studies, Nanyang Technological
University, 60 Nanyang View, 639673 Singapore
| | - Xin Lin
- Institute
of Advanced Studies, Nanyang Technological
University, 60 Nanyang View, 639673 Singapore
| | - Haibin Su
- Institute
of Advanced Studies, Nanyang Technological
University, 60 Nanyang View, 639673 Singapore
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Hong Kong, China
| |
Collapse
|
5
|
Kumbhar BV, Borogaon A, Panda D, Kunwar A. Exploring the Origin of Differential Binding Affinities of Human Tubulin Isotypes αβII, αβIII and αβIV for DAMA-Colchicine Using Homology Modelling, Molecular Docking and Molecular Dynamics Simulations. PLoS One 2016; 11:e0156048. [PMID: 27227832 PMCID: PMC4882049 DOI: 10.1371/journal.pone.0156048] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/09/2016] [Indexed: 12/12/2022] Open
Abstract
Tubulin isotypes are found to play an important role in regulating microtubule dynamics. The isotype composition is also thought to contribute in the development of drug resistance as tubulin isotypes show differential binding affinities for various anti-cancer agents. Tubulin isotypes αβII, αβIII and αβIV show differential binding affinity for colchicine. However, the origin of differential binding affinity is not well understood at the molecular level. Here, we investigate the origin of differential binding affinity of a colchicine analogue N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-colchicine) for human αβII, αβIII and αβIV isotypes, employing sequence analysis, homology modeling, molecular docking, molecular dynamics simulation and MM-GBSA binding free energy calculations. The sequence analysis study shows that the residue compositions are different in the colchicine binding pocket of αβII and αβIII, whereas no such difference is present in αβIV tubulin isotypes. Further, the molecular docking and molecular dynamics simulations results show that residue differences present at the colchicine binding pocket weaken the bonding interactions and the correct binding of DAMA-colchicine at the interface of αβII and αβIII tubulin isotypes. Post molecular dynamics simulation analysis suggests that these residue variations affect the structure and dynamics of αβII and αβIII tubulin isotypes, which in turn affect the binding of DAMA-colchicine. Further, the binding free-energy calculation shows that αβIV tubulin isotype has the highest binding free-energy and αβIII has the lowest binding free-energy for DAMA-colchicine. The order of binding free-energy for DAMA-colchicine is αβIV ≃ αβII >> αβIII. Thus, our computational approaches provide an insight into the effect of residue variations on differential binding of αβII, αβIII and αβIV tubulin isotypes with DAMA-colchicine and may help to design new analogues with higher binding affinities for tubulin isotypes.
Collapse
Affiliation(s)
- Bajarang Vasant Kumbhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India
| | - Anubhaw Borogaon
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India
| |
Collapse
|
6
|
Traversing the folding pathway of proteins using temperature-aided cascade molecular dynamics with conformation-dependent charges. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:463-82. [DOI: 10.1007/s00249-016-1115-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/18/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
|
7
|
Peter EK, Pivkin IV, Shea JE. A kMC-MD method with generalized move-sets for the simulation of folding of α-helical and β-stranded peptides. J Chem Phys 2015; 142:144903. [DOI: 10.1063/1.4915919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Emanuel K. Peter
- Faculty of Informatics, Institute of Computational Science, University of Lugano, Lugano, Switzerland
| | - Igor V. Pivkin
- Faculty of Informatics, Institute of Computational Science, University of Lugano, Lugano, Switzerland
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
8
|
Shao Q. Important roles of hydrophobic interactions in folding and charge interactions in misfolding of α-helix bundle protein. RSC Adv 2015. [DOI: 10.1039/c4ra14265a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
An enhanced-sampling molecular dynamics simulation is presented to quantitatively demonstrate the important roles of hydrophobic and charge interactions in the folding and misfolding of α-helix bundle protein, respectively.
Collapse
Affiliation(s)
- Qiang Shao
- Drug Discovery and Design Center
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| |
Collapse
|