1
|
Kias F, Abtouche S, Amar A, Elkechai A, Boucekkine A, Ephritikhine M. New insights into the reactivity of the triscyclopentadienyl monothiolate uranium(IV) complexes: CS2 and CO2 insertion and redox properties. A DFT theoretical approach. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
2
|
Riedhammer J, Halter DP, Meyer K. Nonaqueous Electrochemistry of Uranium Complexes: A Guide to Structure-Reactivity Tuning. Chem Rev 2023. [PMID: 37134149 DOI: 10.1021/acs.chemrev.2c00903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Uranium complexes can be stabilized in a wide range of oxidation states, ranging from UII to UVI and a very recent example of a UI complex. This review provides a comprehensive summary of electrochemistry data reported on uranium complexes in nonaqueous electrolyte, to serve as a clear point of reference for newly synthesized compounds, and to evaluate how different ligand environments influence experimentally observed electrochemical redox potentials. Data for over 200 uranium compounds are reported, together with a detailed discussion of trends observed across larger series of complexes in response to ligand field variations. In analogy to the traditional Lever parameter, we utilized the data to derive a new uranium-specific set of ligand field parameters UEL(L) that more accurately represent metal-ligand bonding situations than previously existing transition metal derived parameters. Exemplarily, we demonstrate UEL(L) parameters to be useful for the prediction of structure-reactivity correlations in order to activate specific substrate targets.
Collapse
Affiliation(s)
- Judith Riedhammer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Dominik P Halter
- Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich (TUM), TUM School of Natural Sciences, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Su J, Cheisson T, McSkimming A, Goodwin CAP, DiMucci IM, Albrecht-Schönzart T, Scott BL, Batista ER, Gaunt AJ, Kozimor SA, Yang P, Schelter EJ. Complexation and redox chemistry of neptunium, plutonium and americium with a hydroxylaminato ligand. Chem Sci 2021; 12:13343-13359. [PMID: 34777753 PMCID: PMC8528073 DOI: 10.1039/d1sc03905a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022] Open
Abstract
There is significant interest in ligands that can stabilize actinide ions in oxidation states that can be exploited to chemically differentiate 5f and 4f elements. Applications range from developing large-scale actinide separation strategies for nuclear industry processing to carrying out analytical studies that support environmental monitoring and remediation efforts. Here, we report syntheses and characterization of Np(iv), Pu(iv) and Am(iii) complexes with N-tert-butyl-N-(pyridin-2-yl)hydroxylaminato, [2-(tBuNO)py]−(interchangeable hereafter with [(tBuNO)py]−), a ligand which was previously found to impart remarkable stability to cerium in the +4 oxidation state. An[(tBuNO)py]4 (An = Pu, 1; Np, 2) have been synthesized, characterized by X-ray diffraction, X-ray absorption, 1H NMR and UV-vis-NIR spectroscopies, and cyclic voltammetry, along with computational modeling and analysis. In the case of Pu, oxidation of Pu(iii) to Pu(iv) was observed upon complexation with the [(tBuNO)py]− ligand. The Pu complex 1 and Np complex 2 were also isolated directly from Pu(iv) and Np(iv) precursors. Electrochemical measurements indicate that a Pu(iii) species can be accessed upon one-electron reduction of 1 with a large negative reduction potential (E1/2 = −2.26 V vs. Fc+/0). Applying oxidation potentials to 1 and 2 resulted in ligand-centered electron transfer reactions, which is different from the previously reported redox chemistry of UIV[(tBuNO)py]4 that revealed a stable U(v) product. Treatment of an anhydrous Am(iii) precursor with the [(tBuNO)py]− ligand did not result in oxidation to Am(iv). Instead, the dimeric complex [AmIII(μ2-(tBuNO)py)((tBuNO)py)2]2 (3) was isolated. Complex 3 is a rare example of a structurally characterized non-aqueous Am-containing molecular complex prepared using inert atmosphere techniques. Predicted redox potentials from density functional theory calculations show a trivalent accessibility trend of U(iii) < Np(iii) < Pu(iii) and that the higher oxidation states of actinides (i.e., +5 for Np and Pu and +4 for Am) are not stabilized by [2-(tBuNO)py]−, in good agreement with experimental observations. The coordination modes and electronic properties of a strongly coordinating hydroxylaminato ligand with Np, Pu and Am were investigated.Complexes were characterized by a range of experimental and computational techniques.![]()
Collapse
Affiliation(s)
- Jing Su
- Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Thibault Cheisson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 S 34th St. Philadelphia Pennsylvania 19104 USA
| | - Alex McSkimming
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 S 34th St. Philadelphia Pennsylvania 19104 USA
| | - Conrad A P Goodwin
- Chemistry Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Ida M DiMucci
- Chemistry Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Thomas Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University 95 Chieftan Way Tallahassee Florida 32306 USA
| | - Brian L Scott
- Materials and Physics Applications Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Andrew J Gaunt
- Chemistry Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Stosh A Kozimor
- Chemistry Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 S 34th St. Philadelphia Pennsylvania 19104 USA
| |
Collapse
|
4
|
Talha Yassia K, Belkhiri L, Costuas K, Boucekkine A. How the Ancillary Ligand X Drives the Redox Properties of Biscyclopentadienyl Pentavalent Uranium Cp 2U(═N-Ar)X Complexes. Inorg Chem 2021; 60:2203-2218. [PMID: 33481573 DOI: 10.1021/acs.inorgchem.0c02908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Relativistic zero order regular approximation (ZORA) density functional theory computations, coupled with the conductor-like screening model for solvation effects, are used to investigate the redox properties of a series of biscyclopentadienyl pentavalent uranium(V) complexes Cp2U(═N-Ar)X (Ar = 2,6-Me2-C6H3; X = OTf, C6F5, SPh, C═CPh, NPh2, Ph, Me, OPh, N(TMS)2, N═CPh2). Regarding the UV/UIV and UVI/UV couple systems, a linear correlation (R2 ∼ 0.99) is obtained at the ZORA/BP86/TZP level, between the calculated ionization energies and the measured experimental E1/2 half-wave oxidation potentials (UVI/UV) and between the electron affinities and the reduction potentials E1/2 (UV/UIV). The study brings to light the importance of solvation effects that are needed in order to achieve a good agreement between the theory and experiment. Introducing spin-orbit coupling corrections slightly improves this agreement. Both the singly occupied molecular orbital and the lowest unoccupied molecular orbital of the neutral UV complexes exhibit a majority 5f orbital character. The frontier molecular orbitals show a substantial ancillary ligand X σ and/or π character that drives the redox properties. Moreover, our investigations allow estimating the redox potentials of the X = Ph, X = C6F5, and N(TMS)2 UV complexes for which no experimental electrochemical data exist.
Collapse
Affiliation(s)
- Khadidja Talha Yassia
- Laboratoire de Physique Mathématique et Subatomique LPMS, Département de Chimie, Université des Frères Mentouri Constantine 1, 25017 Constantine, Algeria
| | - Lotfi Belkhiri
- Laboratoire de Physique Mathématique et Subatomique LPMS, Département de Chimie, Université des Frères Mentouri Constantine 1, 25017 Constantine, Algeria
| | - Karine Costuas
- Univ Rennes, ISCR UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex, France
| | - Abdou Boucekkine
- Univ Rennes, ISCR UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex, France
| |
Collapse
|
5
|
Talbi-Ingrachen F, Talbi F, Kias F, Elkechai A, Boucekkine A, Daul C. DFT investigation of methane metathesis with L2AnCH3 actinide complexes catalysts (L = Cl, Cp, Cp*; An = Ac, Th, Pa, U, Np, Pu). COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
C F bond breaking by bare actinide monocations in the gas phase: a relativistic DFT study. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Kias F, Talbi F, Elkechai A, Boucekkine A, Hauchard D, Berthet JC, Ephritikhine M. Redox Properties of Monocyclooctatetraenyl Uranium(IV) and (V) Complexes: Experimental and Relativistic DFT Studies. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Farida Kias
- Laboratoire
de Physique et Chimie Quantique, Faculté des Sciences, Université Mouloud Mammeri de Tizi-Ouzou, 15000 Tizi-Ouzou, Algeria
| | - Fatiha Talbi
- Laboratoire
de Physique et Chimie Quantique, Faculté des Sciences, Université Mouloud Mammeri de Tizi-Ouzou, 15000 Tizi-Ouzou, Algeria
| | - Aziz Elkechai
- Laboratoire
de Physique et Chimie Quantique, Faculté des Sciences, Université Mouloud Mammeri de Tizi-Ouzou, 15000 Tizi-Ouzou, Algeria
| | - Abdou Boucekkine
- Institut
des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, Rennes CEDEX 35042, France
| | - Didier Hauchard
- Ecole
Nationale Supérieure de Chimie de Rennes, ISCR, UMR 6226 CNRS, 11 allée de Beaulieu, CS 50837, Rennes CEDEX 35708, France
| | - Jean-Claude Berthet
- NIMBE,
CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Michel Ephritikhine
- NIMBE,
CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
8
|
da Rocha EP, Rodrigues HA, da Cunha EF, Ramalho TC. Probing kinetic and thermodynamic parameters as well as solvent and substituent effects on spectroscopic probes of 2-amino-1,4-naphthoquinone derivatives. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Insights into the value of statistical models and relativistic effects for the investigation of halogenated derivatives of fluorescent probes. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1862-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|