1
|
Rose T, Bursch M, Mewes JM, Grimme S. Fast and Robust Modeling of Lanthanide and Actinide Complexes, Biomolecules, and Molecular Crystals with the Extended GFN-FF Model. Inorg Chem 2024; 63:19364-19374. [PMID: 39334529 DOI: 10.1021/acs.inorgchem.4c03215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Lanthanides (Ln) and actinides (An) have recently become important tools in biomedical and materials science. However, the development of computational methods able to describe such elements in various environments has not kept up with the pace of the field. Addressing this challenge, this work introduces and showcases an extension of the GFN-FF to An alongside a reparameterization for Ln. This development fills a gap for fast computational methods that are out-of-the-box applicable to large f-element-containing systems with thousands of atoms. We discuss the reparameterization of the charge model and the covalent topology setup and showcase the model through various applications: Molecular dynamics simulations, optimization of Ln-containing biomolecules, and optimizations of several periodic structures. With the presented improvements, GFN-FF is a powerful method that routinely delivers robust and accurate geometries for large Ln/An systems with thousands of atoms.
Collapse
Affiliation(s)
- Thomas Rose
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| | | | | | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| |
Collapse
|
2
|
Smardz P, Anila MM, Rogowski P, Li MS, Różycki B, Krupa P. A Practical Guide to All-Atom and Coarse-Grained Molecular Dynamics Simulations Using Amber and Gromacs: A Case Study of Disulfide-Bond Impact on the Intrinsically Disordered Amyloid Beta. Int J Mol Sci 2024; 25:6698. [PMID: 38928405 PMCID: PMC11204378 DOI: 10.3390/ijms25126698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intrinsically disordered proteins (IDPs) pose challenges to conventional experimental techniques due to their large-scale conformational fluctuations and transient structural elements. This work presents computational methods for studying IDPs at various resolutions using the Amber and Gromacs packages with both all-atom (Amber ff19SB with the OPC water model) and coarse-grained (Martini 3 and SIRAH) approaches. The effectiveness of these methodologies is demonstrated by examining the monomeric form of amyloid-β (Aβ42), an IDP, with and without disulfide bonds at different resolutions. Our results clearly show that the addition of a disulfide bond decreases the β-content of Aβ42; however, it increases the tendency of the monomeric Aβ42 to form fibril-like conformations, explaining the various aggregation rates observed in experiments. Moreover, analysis of the monomeric Aβ42 compactness, secondary structure content, and comparison between calculated and experimental chemical shifts demonstrates that all three methods provide a reasonable choice to study IDPs; however, coarse-grained approaches may lack some atomistic details, such as secondary structure recognition, due to the simplifications used. In general, this study not only explains the role of disulfide bonds in Aβ42 but also provides a step-by-step protocol for setting up, conducting, and analyzing molecular dynamics (MD) simulations, which is adaptable for studying other biomacromolecules, including folded and disordered proteins and peptides.
Collapse
Affiliation(s)
| | | | | | | | | | - Pawel Krupa
- Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland; (P.S.); (M.M.A.); (P.R.); (M.S.L.); (B.R.)
| |
Collapse
|
3
|
Rogoża NH, Krupa MA, Krupa P, Sieradzan AK. Integrating Explicit and Implicit Fullerene Models into UNRES Force Field for Protein Interaction Studies. Molecules 2024; 29:1919. [PMID: 38731411 PMCID: PMC11085604 DOI: 10.3390/molecules29091919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Fullerenes, particularly C60, exhibit unique properties that make them promising candidates for various applications, including drug delivery and nanomedicine. However, their interactions with biomolecules, especially proteins, remain not fully understood. This study implements both explicit and implicit C60 models into the UNRES coarse-grained force field, enabling the investigation of fullerene-protein interactions without the need for restraints to stabilize protein structures. The UNRES force field offers computational efficiency, allowing for longer timescale simulations while maintaining accuracy. Five model proteins were studied: FK506 binding protein, HIV-1 protease, intestinal fatty acid binding protein, PCB-binding protein, and hen egg-white lysozyme. Molecular dynamics simulations were performed with and without C60 to assess protein stability and investigate the impact of fullerene interactions. Analysis of contact probabilities reveals distinct interaction patterns for each protein. FK506 binding protein (1FKF) shows specific binding sites, while intestinal fatty acid binding protein (1ICN) and uteroglobin (1UTR) exhibit more generalized interactions. The explicit C60 model shows good agreement with all-atom simulations in predicting protein flexibility, the position of C60 in the binding pocket, and the estimation of effective binding energies. The integration of explicit and implicit C60 models into the UNRES force field, coupled with recent advances in coarse-grained modeling and multiscale approaches, provides a powerful framework for investigating protein-nanoparticle interactions at biologically relevant scales without the need to use restraints stabilizing the protein, thus allowing for large conformational changes to occur. These computational tools, in synergy with experimental techniques, can aid in understanding the mechanisms and consequences of nanoparticle-biomolecule interactions, guiding the design of nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Natalia H. Rogoża
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Bażyńskiego 8, 80-309 Gdańsk, Poland; (N.H.R.); (M.A.K.); (A.K.S.)
| | - Magdalena A. Krupa
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Bażyńskiego 8, 80-309 Gdańsk, Poland; (N.H.R.); (M.A.K.); (A.K.S.)
| | - Pawel Krupa
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Adam K. Sieradzan
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Bażyńskiego 8, 80-309 Gdańsk, Poland; (N.H.R.); (M.A.K.); (A.K.S.)
| |
Collapse
|
4
|
Leśniewski M, Pyrka M, Czaplewski C, Co NT, Jiang Y, Gong Z, Tang C, Liwo A. Assessment of Two Restraint Potentials for Coarse-Grained Chemical-Cross-Link-Assisted Modeling of Protein Structures. J Chem Inf Model 2024; 64:1377-1393. [PMID: 38345917 PMCID: PMC10900291 DOI: 10.1021/acs.jcim.3c01890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
The influence of distance restraints from chemical cross-link mass spectroscopy (XL-MS) on the quality of protein structures modeled with the coarse-grained UNRES force field was assessed by using a protocol based on multiplexed replica exchange molecular dynamics, in which both simulated and experimental cross-link restraints were employed, for 23 small proteins. Six cross-links with upper distance boundaries from 4 Å to 12 Å (azido benzoic acid succinimide (ABAS), triazidotriazine (TATA), succinimidyldiazirine (SDA), disuccinimidyl adipate (DSA), disuccinimidyl glutarate (DSG), and disuccinimidyl suberate (BS3)) and two types of restraining potentials ((i) simple flat-bottom Lorentz-like potentials dependent on side chain distance (all cross-links) and (ii) distance- and orientation-dependent potentials determined based on molecular dynamics simulations of model systems (DSA, DSG, BS3, and SDA)) were considered. The Lorentz-like potentials with properly set parameters were found to produce a greater number of higher-quality models compared to unrestrained simulations than the MD-based potentials, because the latter can force too long distances between side chains. Therefore, the flat-bottom Lorentz-like potentials are recommended to represent cross-link restraints. It was also found that significant improvement of model quality upon the introduction of cross-link restraints is obtained when the sum of differences of indices of cross-linked residues exceeds 150.
Collapse
Affiliation(s)
- Mateusz Leśniewski
- Faculty
of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Maciej Pyrka
- Faculty
of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
- Department
of Physics and Biophysics, University of
Warmia and Mazury, ul. Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Cezary Czaplewski
- Faculty
of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Nguyen Truong Co
- Faculty
of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Yida Jiang
- College
of Chemistry and Molecular Engineering & Center for Quantitative
Biology & PKU-Tsinghua Center for Life Sciences & Beijing
National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Zhou Gong
- Innovation
Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 30 W. Xiao Hong Shan, Wuhan 430071, China
| | - Chun Tang
- College
of Chemistry and Molecular Engineering & Center for Quantitative
Biology & PKU-Tsinghua Center for Life Sciences & Beijing
National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Adam Liwo
- Faculty
of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
5
|
Garay PG, Machado MR, Verli H, Pantano S. SIRAH Late Harvest: Coarse-Grained Models for Protein Glycosylation. J Chem Theory Comput 2024; 20:963-976. [PMID: 38175797 DOI: 10.1021/acs.jctc.3c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Glycans constitute one of the most complex families of biological molecules. Despite their crucial role in a plethora of biological processes, they remain largely uncharacterized because of their high complexity. Their intrinsic flexibility and the vast variability associated with the many combination possibilities have hampered their experimental determination. Although theoretical methods have proven to be a valid alternative to the study of glycans, the large size associated with polysaccharides, proteoglycans, and glycolipids poses significant challenges to a fully atomistic description of biologically relevant glycoconjugates. On the other hand, the exquisite dependence on hydrogen bonds to determine glycans' structure makes the development of simplified or coarse-grained (CG) representations extremely challenging. This is particularly the case when glycan representations are expected to be compatible with CG force fields that include several molecular types. We introduce a CG representation able to simulate a wide variety of polysaccharides and common glycosylation motifs in proteins, which is fully compatible with the CG SIRAH force field. Examples of application to N-glycosylated proteins, including antibody recognition and calcium-mediated glycan-protein interactions, highlight the versatility of the enlarged set of CG molecules provided by SIRAH.
Collapse
Affiliation(s)
- Pablo G Garay
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Matias R Machado
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Hugo Verli
- Programa de Pos-Graduacao em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Goncalves, 9500, Porto Alegre 91509-900, Brazil
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| |
Collapse
|
6
|
Roszczenko-Jasińska P, Giełdoń A, Mazur D, Spodzieja M, Plichta M, Czaplewski C, Bal W, Jagusztyn-Krynicka EK, Bartosik D. Exploring the inhibitory potential of in silico-designed small peptides on Helicobacter pylori Hp0231 (DsbK), a periplasmic oxidoreductase involved in disulfide bond formation. Front Mol Biosci 2024; 10:1335704. [PMID: 38274095 PMCID: PMC10810133 DOI: 10.3389/fmolb.2023.1335704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Helicobacter pylori is a bacterium that colonizes the gastric epithelium, which affects millions of people worldwide. H. pylori infection can lead to various gastrointestinal diseases, including gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. Conventional antibiotic therapies face challenges due to increasing antibiotic resistance and patient non-compliance, necessitating the exploration of alternative treatment approaches. In this study, we focused on Hp0231 (DsbK), an essential component of the H. pylori Dsb (disulfide bond) oxidative pathway, and investigated peptide-based inhibition as a potential therapeutic strategy. Methods: Three inhibitory peptides designed by computational modeling were evaluated for their effectiveness using a time-resolved fluorescence assay. We also examined the binding affinity between Hp0231 and the peptides using microscale thermophoresis. Results and discussion: Our findings demonstrate that in silico-designed synthetic peptides can effectively inhibit Hp0231-mediated peptide oxidation. Targeting Hp0231 oxidase activity could attenuate H. pylori virulence without compromising bacterial viability. Therefore, peptide-based inhibitors of Hp0231 could be candidates for the development of new targeted strategy, which does not influence the composition of the natural human microbiome, but deprive the bacterium of its pathogenic properties.
Collapse
Affiliation(s)
- Paula Roszczenko-Jasińska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Artur Giełdoń
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Dominika Mazur
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Maciej Plichta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Krupa MA, Krupa P. Free-Docking and Template-Based Docking: Physics Versus Knowledge-Based Docking. Methods Mol Biol 2024; 2780:27-41. [PMID: 38987462 DOI: 10.1007/978-1-0716-3985-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Docking methods can be used to predict the orientations of two or more molecules with respect of each other using a plethora of various algorithms, which can be based on the physics of interactions or can use information from databases and templates. The usability of these approaches depends on the type and size of the molecules, whose relative orientation will be estimated. The two most important limitations are (i) the computational cost of the prediction and (ii) the availability of the structural information for similar complexes. In general, if there is enough information about similar systems, knowledge-based and template-based methods can significantly reduce the computational cost while providing high accuracy of the prediction. However, if the information about the system topology and interactions between its partners is scarce, physics-based methods are more reliable or even the only choice. In this chapter, knowledge-, template-, and physics-based methods will be compared and briefly discussed providing examples of their usability with a special emphasis on physics-based protein-protein, protein-peptide, and protein-fullerene docking in the UNRES coarse-grained model.
Collapse
Affiliation(s)
- Magdalena A Krupa
- Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Krupa
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
8
|
Airas J, Ding X, Zhang B. Transferable Implicit Solvation via Contrastive Learning of Graph Neural Networks. ACS CENTRAL SCIENCE 2023; 9:2286-2297. [PMID: 38161379 PMCID: PMC10755853 DOI: 10.1021/acscentsci.3c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2024]
Abstract
Implicit solvent models are essential for molecular dynamics simulations of biomolecules, striking a balance between computational efficiency and biological realism. Efforts are underway to develop accurate and transferable implicit solvent models and coarse-grained (CG) force fields in general, guided by a bottom-up approach that matches the CG energy function with the potential of mean force (PMF) defined by the finer system. However, practical challenges arise due to the lack of analytical expressions for the PMF and algorithmic limitations in parameterizing CG force fields. To address these challenges, a machine learning-based approach is proposed, utilizing graph neural networks (GNNs) to represent the solvation free energy and potential contrasting for parameter optimization. We demonstrate the effectiveness of the approach by deriving a transferable GNN implicit solvent model using 600,000 atomistic configurations of six proteins obtained from explicit solvent simulations. The GNN model provides solvation free energy estimations much more accurately than state-of-the-art implicit solvent models, reproducing configurational distributions of explicit solvent simulations. We also demonstrate the reasonable transferability of the GNN model outside of the training data. Our study offers valuable insights for deriving systematically improvable implicit solvent models and CG force fields from a bottom-up perspective.
Collapse
Affiliation(s)
- Justin Airas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United
States
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United
States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United
States
| |
Collapse
|
9
|
Yamada T, Miyazaki Y, Harada S, Kumar A, Vanni S, Shinoda W. Improved Protein Model in SPICA Force Field. J Chem Theory Comput 2023; 19:8967-8977. [PMID: 37989551 DOI: 10.1021/acs.jctc.3c01016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The previous version of the SPICA coarse-grained (CG) force field (FF) protein model focused primarily on membrane proteins and successfully reproduced the dimerization free energies of several transmembrane helices and the stable structures of various membrane protein assemblies. However, that model had limited accuracy when applied to other proteins, such as intrinsically disordered proteins (IDPs) and peripheral proteins, because the dimensions of the IDPs in an aqueous solution were too compact, and protein binding on the lipid membrane surface was overstabilized. To improve the accuracy of the SPICA FF model for the simulation of such systems, in this study, we introduce protein secondary structure-dependent nonbonded interaction parameters to the backbone segments and reoptimize almost all nonbonded parameters for amino acids. The improved FF proposed here successfully reproduces the radii of gyration of various IDPs, the binding sensitivity of several peripheral membrane proteins, and the dimerization free energies of several transmembrane helices. The new model also shows improved agreement with experiments on the free energy of peptide association in water. In addition, an extensive library of nonbonded interactions between proteins and lipids, including various glycerophospholipids, sphingolipids, and cholesterol, allows the study of specific interactions between lipids and peripheral and transmembrane proteins. Hence, the new SPICA FF (version 2) proposed herein is applicable with high accuracy for simulating a wide range of protein systems.
Collapse
Affiliation(s)
- Teppei Yamada
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yusuke Miyazaki
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Shogo Harada
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ashutosh Kumar
- Department of Biology and National Center of Competence in Research Bio-inspired Materials, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Stefano Vanni
- Department of Biology and National Center of Competence in Research Bio-inspired Materials, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
10
|
Wesołowski PA, Sieradzan AK, Winnicki MJ, Morgan JWR, Wales DJ. Energy landscapes for proteins described by the UNRES coarse-grained potential. Biophys Chem 2023; 303:107107. [PMID: 37862761 DOI: 10.1016/j.bpc.2023.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 10/22/2023]
Abstract
The self-assembly of proteins is encoded in the underlying potential energy surface (PES), from which we can predict structure, dynamics, and thermodynamic properties. However, the corresponding analysis becomes increasingly challenging with larger protein sizes, due to the computational time required, which grows significantly with the number of atoms. Coarse-grained models offer an attractive approach to reduce the computational cost. In this Feature Article, we describe our implementation of the UNited RESidue (UNRES) coarse-grained potential in the Cambridge energy landscapes software. We have applied this framework to explore the energy landscapes of four proteins that exhibit native states involving different secondary structures. Here we have tested the ability of the UNRES potential to represent the global energy landscape of proteins containing up to 100 amino acid residues. The resulting potential energy landscapes exhibit good agreement with experiment, with low-lying minima close to the PDB geometries and to results obtained using the all-atom AMBER force field. The new program interfaces will allow us to investigate larger biomolecules in future work, using the UNRES potential in combination with all the methodology available in the computational energy landscapes framework.
Collapse
Affiliation(s)
- Patryk A Wesołowski
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Adam K Sieradzan
- Faculty of Chemistry, Gdansk University, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Michał J Winnicki
- Faculty of Chemistry, Gdansk University, Wita Stwosza 63, 80-308 Gdańsk, Poland; Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK 73104, USA; Intercollegiate Faculty of Biotechnology, University of Gdańsk and the Medical University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - John W R Morgan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Downing College, University of Cambridge, Regent St., Cambridge CB2 1DQ, UK
| | - David J Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
11
|
Borges-Araújo L, Patmanidis I, Singh AP, Santos LHS, Sieradzan AK, Vanni S, Czaplewski C, Pantano S, Shinoda W, Monticelli L, Liwo A, Marrink SJ, Souza PCT. Pragmatic Coarse-Graining of Proteins: Models and Applications. J Chem Theory Comput 2023; 19:7112-7135. [PMID: 37788237 DOI: 10.1021/acs.jctc.3c00733] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The molecular details involved in the folding, dynamics, organization, and interaction of proteins with other molecules are often difficult to assess by experimental techniques. Consequently, computational models play an ever-increasing role in the field. However, biological processes involving large-scale protein assemblies or long time scale dynamics are still computationally expensive to study in atomistic detail. For these applications, employing coarse-grained (CG) modeling approaches has become a key strategy. In this Review, we provide an overview of what we call pragmatic CG protein models, which are strategies combining, at least in part, a physics-based implementation and a top-down experimental approach to their parametrization. In particular, we focus on CG models in which most protein residues are represented by at least two beads, allowing these models to retain some degree of chemical specificity. A description of the main modern pragmatic protein CG models is provided, including a review of the most recent applications and an outlook on future perspectives in the field.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Ilias Patmanidis
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Akhil P Singh
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
| | - Lucianna H S Santos
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Adam K Sieradzan
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Inserm, CNRS, 06560 Valbonne, France
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita, Okayama 700-8530, Japan
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Adam Liwo
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| |
Collapse
|
12
|
Danielsson A, Samsonov SA, Liwo A, Sieradzan AK. Extension of the SUGRES-1P Coarse-Grained Model of Polysaccharides to Heparin. J Chem Theory Comput 2023; 19:6023-6036. [PMID: 37587433 PMCID: PMC10500997 DOI: 10.1021/acs.jctc.3c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 08/18/2023]
Abstract
Heparin is an unbranched periodic polysaccharide composed of negatively charged monomers and involved in key biological processes, including anticoagulation, angiogenesis, and inflammation. Its structure and dynamics have been studied extensively using experimental as well as theoretical approaches. The conventional approach of computational chemistry applied to the analysis of biomolecules is all-atom molecular dynamics, which captures the interactions of individual atoms by solving Newton's equation of motion. An alternative is molecular dynamics simulations using coarse-grained models of biomacromolecules, which offer a reduction of the representation and consequently enable us to extend the time and size scale of simulations by orders of magnitude. In this work, we extend the UNIfied COarse-gRaiNed (UNICORN) model of biological macromolecules developed in our laboratory to heparin. We carried out extensive tests to estimate the optimal weights of energy terms of the effective energy function as well as the optimal Debye-Hückel screening factor for electrostatic interactions. We applied the model to study unbound heparin molecules of polymerization degree ranging from 6 to 68 residues. We compare the obtained coarse-grained heparin conformations with models obtained from X-ray diffraction studies of heparin. The SUGRES-1P force field was able to accurately predict the general shape and global characteristics of heparin molecules.
Collapse
Affiliation(s)
- Annemarie Danielsson
- Faculty of Chemistry, University
of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Sergey A. Samsonov
- Faculty of Chemistry, University
of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Adam Liwo
- Faculty of Chemistry, University
of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Adam K. Sieradzan
- Faculty of Chemistry, University
of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
13
|
Airas J, Ding X, Zhang B. Transferable Coarse Graining via Contrastive Learning of Graph Neural Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556923. [PMID: 37745447 PMCID: PMC10515757 DOI: 10.1101/2023.09.08.556923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Coarse-grained (CG) force fields are essential for molecular dynamics simulations of biomolecules, striking a balance between computational efficiency and biological realism. These simulations employ simplified models grouping atoms into interaction sites, enabling the study of complex biomolecular systems over biologically relevant timescales. Efforts are underway to develop accurate and transferable CG force fields, guided by a bottom-up approach that matches the CG energy function with the potential of mean force (PMF) defined by the finer system. However, practical challenges arise due to many-body effects, lack of analytical expressions for the PMF, and limitations in parameterizing CG force fields. To address these challenges, a machine learning-based approach is proposed, utilizing graph neural networks (GNNs) to represent CG force fields and potential contrasting for parameterization from atomistic simulation data. We demonstrate the effectiveness of the approach by deriving a transferable GNN implicit solvent model using 600,000 atomistic configurations of six proteins obtained from explicit solvent simulations. The GNN model provides solvation free energy estimations much more accurately than state-of-the-art implicit solvent models, reproducing configurational distributions of explicit solvent simulations. We also demonstrate the reasonable transferability of the GNN model outside the training data. Our study offers valuable insights for building accurate coarse-grained models bottom-up.
Collapse
Affiliation(s)
- Justin Airas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
14
|
Liwo A, Pyrka M, Czaplewski C, Peng X, Niemi AJ. Long-Time Dynamics of Selected Molecular-Motor Components Using a Physics-Based Coarse-Grained Approach. Biomolecules 2023; 13:941. [PMID: 37371521 PMCID: PMC10296118 DOI: 10.3390/biom13060941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Molecular motors are essential for the movement and transportation of macromolecules in living organisms. Among them, rotatory motors are particularly efficient. In this study, we investigated the long-term dynamics of the designed left-handed alpha/alpha toroid (PDB: 4YY2), the RBM2 flagellum protein ring from Salmonella (PDB: 6SD5), and the V-type Na+-ATPase rotor in Enterococcus hirae (PDB: 2BL2) using microcanonical and canonical molecular dynamics simulations with the coarse-grained UNRES force field, including a lipid-membrane model, on a millisecond laboratory time scale. Our results demonstrate that rotational motion can occur with zero total angular momentum in the microcanonical regime and that thermal motions can be converted into net rotation in the canonical regime, as previously observed in simulations of smaller cyclic molecules. For 6SD5 and 2BL2, net rotation (with a ratcheting pattern) occurring only about the pivot of the respective system was observed in canonical simulations. The extent and direction of the rotation depended on the initial conditions. This result suggests that rotatory molecular motors can convert thermal oscillations into net rotational motion. The energy from ATP hydrolysis is required probably to set the direction and extent of rotation. Our findings highlight the importance of molecular-motor structures in facilitating movement and transportation within living organisms.
Collapse
Affiliation(s)
- Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, Wita Stwosza 63, 80-308 Gdańsk, Poland; (M.P.); (C.C.)
| | - Maciej Pyrka
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, Wita Stwosza 63, 80-308 Gdańsk, Poland; (M.P.); (C.C.)
- Department of Physics and Biophysics, University of Warmia and Mazury, ul. Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, Wita Stwosza 63, 80-308 Gdańsk, Poland; (M.P.); (C.C.)
| | - Xubiao Peng
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China;
| | - Antti J. Niemi
- Nordita, Stockholm University and Uppsala University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden;
| |
Collapse
|
15
|
Ricci E, Vergadou N. Integrating Machine Learning in the Coarse-Grained Molecular Simulation of Polymers. J Phys Chem B 2023; 127:2302-2322. [PMID: 36888553 DOI: 10.1021/acs.jpcb.2c06354] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Machine learning (ML) is having an increasing impact on the physical sciences, engineering, and technology and its integration into molecular simulation frameworks holds great potential to expand their scope of applicability to complex materials and facilitate fundamental knowledge and reliable property predictions, contributing to the development of efficient materials design routes. The application of ML in materials informatics in general, and polymer informatics in particular, has led to interesting results, however great untapped potential lies in the integration of ML techniques into the multiscale molecular simulation methods for the study of macromolecular systems, specifically in the context of Coarse Grained (CG) simulations. In this Perspective, we aim at presenting the pioneering recent research efforts in this direction and discussing how these new ML-based techniques can contribute to critical aspects of the development of multiscale molecular simulation methods for bulk complex chemical systems, especially polymers. Prerequisites for the implementation of such ML-integrated methods and open challenges that need to be met toward the development of general systematic ML-based coarse graining schemes for polymers are discussed.
Collapse
Affiliation(s)
- Eleonora Ricci
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", GR-15341 Agia Paraskevi, Athens, Greece
- Institute of Informatics and Telecommunications, National Center for Scientific Research "Demokritos", GR-15341 Agia Paraskevi, Athens, Greece
| | - Niki Vergadou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", GR-15341 Agia Paraskevi, Athens, Greece
| |
Collapse
|
16
|
Li T, Hendrix E, He Y. Simple and Effective Conformational Sampling Strategy for Intrinsically Disordered Proteins Using the UNRES Web Server. J Phys Chem B 2023; 127:2177-2186. [PMID: 36827446 DOI: 10.1021/acs.jpcb.2c08945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Intrinsically disordered proteins (IDPs) contain more charged amino acids than folded proteins, resulting in a lack of hydrophobic core(s) and a tendency to adopt rapidly interconverting structures rather than well-defined structures. The structural heterogeneity of IDPs, encoded by the amino acid sequence, is closely related to their unique roles in biological pathways, which require them to interact with different binding partners. Recently, Robustelli and co-workers have demonstrated that a balanced all-atom force field can be used to sample heterogeneous structures of disordered proteins ( Proc. Natl. Acad. Sci. U.S.A. 2018, 115, E4758-E4766). However, such a solution requires extensive computational resources, such as Anton supercomputers. Here, we propose a simple and effective solution to sample the conformational space of IDPs using a publicly available web server, namely, the UNited-RESidue (UNRES) web server. Our proposed solution requires no investment in computational resources and no prior knowledge of UNRES. UNRES Replica Exchange Molecular Dynamics (REMD) simulations were carried out on a set of eight disordered proteins at temperatures spanning from 270 to 430 K. Utilizing the latest UNRES force field designed for structured proteins, with proper selections of temperatures, we were able to produce comparable results to all-atom force fields as reported in work done by Robustelli and co-workers. In addition, NMR observables and the radius of gyration calculated from UNRES ensembles were directly compared with the experimental data to further evaluate the accuracy of the UNRES model at all temperatures. Our results suggest that carrying out the UNRES simulations at optimal temperatures using the UNRES web server can be a good alternative to sample heterogeneous structures of IDPs.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Emily Hendrix
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Yi He
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States.,Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
17
|
Lipska AG, Sieradzan AK, Czaplewski C, Lipińska AD, Ocetkiewicz KM, Proficz J, Czarnul P, Krawczyk H, Liwo A. Long-time scale simulations of virus-like particles from three human-norovirus strains. J Comput Chem 2023; 44:1470-1483. [PMID: 36799410 DOI: 10.1002/jcc.27087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 01/29/2023] [Indexed: 02/18/2023]
Abstract
The dynamics of the virus like particles (VLPs) corresponding to the GII.4 Houston, GII.2 SMV, and GI.1 Norwalk strains of human noroviruses (HuNoV) that cause gastroenteritis was investigated by means of long-time (about 30 μs in the laboratory timescale) molecular dynamics simulations with the coarse-grained UNRES force field. The main motion of VLP units turned out to be the bending at the junction between the P1 subdomain (that sits in the VLP shell) and the P2 subdomain (that protrudes outside) of the major VP1 protein, this resulting in a correlated wagging motion of the P2 subdomains with respect to the VLP surface. The fluctuations of the P2 subdomain were found to be more pronounced and the P2 domain made a greater angle with the normal to the VLP surface for the GII.2 strain, which could explain the inability of this strain to bind the histo-blood group antigens (HBGAs).
Collapse
Affiliation(s)
- Agnieszka G Lipska
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Adam K Sieradzan
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Cezary Czaplewski
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Andrea D Lipińska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Krzysztof M Ocetkiewicz
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Jerzy Proficz
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Paweł Czarnul
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Henryk Krawczyk
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Adam Liwo
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| |
Collapse
|
18
|
Sieradzan AK, Sans-Duñó J, Lubecka EA, Czaplewski C, Lipska AG, Leszczyński H, Ocetkiewicz KM, Proficz J, Czarnul P, Krawczyk H, Liwo A. Optimization of parallel implementation of UNRES package for coarse-grained simulations to treat large proteins. J Comput Chem 2023; 44:602-625. [PMID: 36378078 DOI: 10.1002/jcc.27026] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
We report major algorithmic improvements of the UNRES package for physics-based coarse-grained simulations of proteins. These include (i) introduction of interaction lists to optimize computations, (ii) transforming the inertia matrix to a pentadiagonal form to reduce computing and memory requirements, (iii) removing explicit angles and dihedral angles from energy expressions and recoding the most time-consuming energy/force terms to minimize the number of operations and to improve numerical stability, (iv) using OpenMP to parallelize those sections of the code for which distributed-memory parallelization involves unfavorable computing/communication time ratio, and (v) careful memory management to minimize simultaneous access of distant memory sections. The new code enables us to run molecular dynamics simulations of protein systems with size exceeding 100,000 amino-acid residues, reaching over 1 ns/day (1 μs/day in all-atom timescale) with 24 cores for proteins of this size. Parallel performance of the code and comparison of its performance with that of AMBER, GROMACS and MARTINI 3 is presented.
Collapse
Affiliation(s)
- Adam K Sieradzan
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Jordi Sans-Duñó
- Department of Chemistry, University of Lleida, Lleida, Spain
| | - Emilia A Lubecka
- Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Agnieszka G Lipska
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Henryk Leszczyński
- Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Krzysztof M Ocetkiewicz
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Jerzy Proficz
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Paweł Czarnul
- Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Henryk Krawczyk
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| |
Collapse
|
19
|
NARall: a novel tool for reconstruction of the all-atom structure of nucleic acids from heavily coarse-grained model. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractNucleic acids are one of the most important cellular components. These molecules have been studied both experimentally and theoretically. As all-atom simulations are still limited to short time scales, coarse-grain modeling allows to study of those molecules on a longer time scale. Nucleic-Acid united RESidue (NARES-2P) is a low-resolution coarse-grained model with two centers of interaction per repeating unit. It has been successfully applied to study DNA self-assembly and telomeric properties. This force field enables the study of nucleic acids Behavior on a long time scale but lacks atomistic details. In this article, we present new software to reconstruct atomistic details from the NARES-2P model. It has been applied to RNA pseudoknot, nucleic acid four-way junction, G-quadruplex and DNA duplex converted to NARES-2P model and back. Moreover, it was applied to DNA structure folded and self-assembled with NARES-2P.
Collapse
|
20
|
Ślusarz R, Lubecka EA, Czaplewski C, Liwo A. Improvements and new functionalities of UNRES server for coarse-grained modeling of protein structure, dynamics, and interactions. Front Mol Biosci 2022; 9:1071428. [PMID: 36589235 PMCID: PMC9794589 DOI: 10.3389/fmolb.2022.1071428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
In this paper we report the improvements and extensions of the UNRES server (https://unres-server.chem.ug.edu.pl) for physics-based simulations with the coarse-grained UNRES model of polypeptide chains. The improvements include the replacement of the old code with the recently optimized one and adding the recent scale-consistent variant of the UNRES force field, which performs better in the modeling of proteins with the β and the α+β structures. The scope of applications of the package was extended to data-assisted simulations with restraints from nuclear magnetic resonance (NMR) and chemical crosslink mass-spectroscopy (XL-MS) measurements. NMR restraints can be input in the NMR Exchange Format (NEF), which has become a standard. Ambiguous NMR restraints are handled without expert intervention owing to a specially designed penalty function. The server can be used to run smaller jobs directly or to prepare input data to run larger production jobs by using standalone installations of UNRES.
Collapse
Affiliation(s)
- Rafał Ślusarz
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Emilia A. Lubecka
- Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland,*Correspondence: Adam Liwo,
| |
Collapse
|
21
|
Sikorska C, Liwo A. Origin of Correlations between Local Conformational States of Consecutive Amino Acid Residues and Their Role in Shaping Protein Structures and in Allostery. J Phys Chem B 2022; 126:9493-9505. [PMID: 36367920 PMCID: PMC9706564 DOI: 10.1021/acs.jpcb.2c04610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/27/2022] [Indexed: 11/13/2022]
Abstract
By analyzing the Kubo-cluster-cumulant expansion of the potential of mean force of polypeptide chains corresponding to backbone-local interactions averaged over the rotation of the peptide groups about the Cα···Cα virtual bonds, we identified two important kinds of "along-chain" correlations that pertain to extended chain segments bordered by turns (usually the β-strands) and to the folded spring-like segments (usually α-helices), respectively, and are expressed as multitorsional potentials. These terms affect the positioning of structural elements with respect to each other and, consequently, contribute to determining their packing. Additionally, for extended chain segments, the correlation terms contribute to propagating the conformational change at one end to the other end, which is characteristic of allosteric interactions. We confirmed both findings by statistical analysis of the virtual-bond geometry of 77 950 proteins. Augmenting coarse-grained and, possibly, all-atom force fields with these correlation terms could improve their capacity to model protein structure and dynamics.
Collapse
Affiliation(s)
- Celina Sikorska
- The
MacDiarmid Institute for Advanced Materials and Nanotechnology, Department
of Physics, The University of Auckland,
Private Bag 92019, Auckland1142, New Zealand
| | - Adam Liwo
- Faculty
of Chemistry, University of Gdańsk,
Fahrenheit Union of Universities in Gdańsk, Wita Stwosza 63, 80-308Gdańsk, Poland
| |
Collapse
|
22
|
Depta PN, Dosta M, Wenzel W, Kozlowska M, Heinrich S. Hierarchical Coarse-Grained Strategy for Macromolecular Self-Assembly: Application to Hepatitis B Virus-Like Particles. Int J Mol Sci 2022; 23:ijms232314699. [PMID: 36499027 PMCID: PMC9740473 DOI: 10.3390/ijms232314699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Macromolecular self-assembly is at the basis of many phenomena in material and life sciences that find diverse applications in technology. One example is the formation of virus-like particles (VLPs) that act as stable empty capsids used for drug delivery or vaccine fabrication. Similarly to the capsid of a virus, VLPs are protein assemblies, but their structural formation, stability, and properties are not fully understood, especially as a function of the protein modifications. In this work, we present a data-driven modeling approach for capturing macromolecular self-assembly on scales beyond traditional molecular dynamics (MD), while preserving the chemical specificity. Each macromolecule is abstracted as an anisotropic object and high-dimensional models are formulated to describe interactions between molecules and with the solvent. For this, data-driven protein-protein interaction potentials are derived using a Kriging-based strategy, built on high-throughput MD simulations. Semi-automatic supervised learning is employed in a high performance computing environment and the resulting specialized force-fields enable a significant speed-up to the micrometer and millisecond scale, while maintaining high intermolecular detail. The reported generic framework is applied for the first time to capture the formation of hepatitis B VLPs from the smallest building unit, i.e., the dimer of the core protein HBcAg. Assembly pathways and kinetics are analyzed and compared to the available experimental observations. We demonstrate that VLP self-assembly phenomena and dependencies are now possible to be simulated. The method developed can be used for the parameterization of other macromolecules, enabling a molecular understanding of processes impossible to be attained with other theoretical models.
Collapse
Affiliation(s)
- Philipp Nicolas Depta
- Institute of Solids Process Engineering and Particle Technology (SPE), Hamburg University of Technology, 21073 Hamburg, Germany
- Correspondence:
| | - Maksym Dosta
- Institute of Solids Process Engineering and Particle Technology (SPE), Hamburg University of Technology, 21073 Hamburg, Germany
- Boehringer Ingelheim Pharma GmbH & Co Kg., 88400 Biberach an der Riss, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mariana Kozlowska
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Heinrich
- Institute of Solids Process Engineering and Particle Technology (SPE), Hamburg University of Technology, 21073 Hamburg, Germany
| |
Collapse
|
23
|
Hendrix E, Motta S, Gahl RF, He Y. Insight into the Initial Stages of the Folding Process in Onconase Revealed by UNRES. J Phys Chem B 2022; 126:7934-7942. [PMID: 36179061 DOI: 10.1021/acs.jpcb.2c04770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The unfolded state of proteins presents many challenges to elucidate the structural basis for biological function. This state is characterized by a large degree of structural heterogeneity which makes it difficult to generate structural models. However, recent experiments into the initial folding events of the 104-residue ribonuclease homologue onconase (ONC) were able to identify the regions in the protein that participate in the initial folding of this protein. Therefore, to gain additional structural insight into the unfolded state of proteins, this study utilized molecular dynamics simulations using the UNited-RESidue (UNRES) force field to evaluate whether there is a good agreement between the experimentally determined initial structures and the structures identified by computer simulations along a folding pathway. Indeed, these UNRES simulations accurately identified the two regions experimentally observed to form the initial native structure along the folding pathway of ONC. In addition, these regions are determined to be chain folding initiation sites (CFIS) according to methods developed previously. Subsequent self-organization maps (SOM) analysis has revealed key structural states involved in these early folding events.
Collapse
Affiliation(s)
- Emily Hendrix
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico87131, United States
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan20126, Italy
| | - Robert F Gahl
- Division of Extramural Activities, National Cancer Institute, National Institutes of Health, Bethesda, Maryland20850, United States
| | - Yi He
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico87131, United States.,Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico87131, United States
| |
Collapse
|
24
|
Lubecka EA, Liwo A. A coarse-grained approach to NMR-data-assisted modeling of protein structures. J Comput Chem 2022; 43:2047-2059. [PMID: 36134668 DOI: 10.1002/jcc.27003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022]
Abstract
The ESCASA algorithm for analytical estimation of proton positions from coarse-grained geometry developed in our recent work has been implemented in modeling protein structures with the highly coarse-grained UNRES model of polypeptide chains (two sites per residue) and nuclear magnetic resonance (NMR) data. A penalty function with the shape of intersecting gorges was applied to treat ambiguous distance restraints, which automatically selects consistent restraints. Hamiltonian replica exchange molecular dynamics was used to carry out the conformational search. The method was tested with both unambiguous and ambiguous restraints producing good-quality models with GDT_TS from 7.4 units higher to 14.4 units lower than those obtained with the CYANA or MELD software for protein-structure determination from NMR data at the all-atom resolution. The method can thus be applied in modeling the structures of flexible proteins, for which extensive conformational search enabled by coarse-graining is more important than high modeling accuracy.
Collapse
Affiliation(s)
- Emilia A Lubecka
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
25
|
Avery C, Patterson J, Grear T, Frater T, Jacobs DJ. Protein Function Analysis through Machine Learning. Biomolecules 2022; 12:1246. [PMID: 36139085 PMCID: PMC9496392 DOI: 10.3390/biom12091246] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Machine learning (ML) has been an important arsenal in computational biology used to elucidate protein function for decades. With the recent burgeoning of novel ML methods and applications, new ML approaches have been incorporated into many areas of computational biology dealing with protein function. We examine how ML has been integrated into a wide range of computational models to improve prediction accuracy and gain a better understanding of protein function. The applications discussed are protein structure prediction, protein engineering using sequence modifications to achieve stability and druggability characteristics, molecular docking in terms of protein-ligand binding, including allosteric effects, protein-protein interactions and protein-centric drug discovery. To quantify the mechanisms underlying protein function, a holistic approach that takes structure, flexibility, stability, and dynamics into account is required, as these aspects become inseparable through their interdependence. Another key component of protein function is conformational dynamics, which often manifest as protein kinetics. Computational methods that use ML to generate representative conformational ensembles and quantify differences in conformational ensembles important for function are included in this review. Future opportunities are highlighted for each of these topics.
Collapse
Affiliation(s)
- Chris Avery
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - John Patterson
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Tyler Grear
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Theodore Frater
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Donald J. Jacobs
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
26
|
Sinha S, Tam B, Wang SM. Applications of Molecular Dynamics Simulation in Protein Study. MEMBRANES 2022; 12:844. [PMID: 36135863 PMCID: PMC9505860 DOI: 10.3390/membranes12090844] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 05/29/2023]
Abstract
Molecular Dynamics (MD) Simulations is increasingly used as a powerful tool to study protein structure-related questions. Starting from the early simulation study on the photoisomerization in rhodopsin in 1976, MD Simulations has been used to study protein function, protein stability, protein-protein interaction, enzymatic reactions and drug-protein interactions, and membrane proteins. In this review, we provide a brief review for the history of MD Simulations application and the current status of MD Simulations applications in protein studies.
Collapse
Affiliation(s)
| | | | - San Ming Wang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
27
|
Lubecka EA, Hansmann UHE. Early Stages of RNA-Mediated Conversion of Human Prions. J Phys Chem B 2022; 126:6221-6230. [PMID: 35973105 PMCID: PMC9420815 DOI: 10.1021/acs.jpcb.2c04614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prion diseases are characterized by the conversion of prion proteins from a PrPC fold into a disease-causing PrPSC form that is self-replicating. A possible agent to trigger this conversion is polyadenosine RNA, but both mechanism and pathways of the conversion are poorly understood. Using coarse-grained molecular dynamic simulations we study the time evolution of PrPC over 600 μs. We find that both the D178N mutation and interacting with polyadenosine RNA reduce the helicity of the protein and encourage formation of segments with strand-like motifs. We conjecture that these transient β-strands nucleate the conversion of the protein to the scrapie conformation PrPSC.
Collapse
Affiliation(s)
- Emilia A Lubecka
- Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Ulrich H E Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019,United States
| |
Collapse
|
28
|
Biskupek I, Czaplewski C, Sawicka J, Iłowska E, Dzierżyńska M, Rodziewicz-Motowidło S, Liwo A. Prediction of Aggregation of Biologically-Active Peptides with the UNRES Coarse-Grained Model. Biomolecules 2022; 12:1140. [PMID: 36009034 PMCID: PMC9406146 DOI: 10.3390/biom12081140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The UNited RESidue (UNRES) model of polypeptide chains was applied to study the association of 20 peptides with sizes ranging from 6 to 32 amino-acid residues. Twelve of those were potentially aggregating hexa- or heptapeptides excised from larger proteins, while the remaining eight contained potentially aggregating sequences, functionalized by attaching larger ends rich in charged residues. For 13 peptides, the experimental data of aggregation were used. The remaining seven were synthesized, and their properties were measured in this work. Multiplexed replica-exchange simulations of eight-chain systems were conducted at 12 temperatures from 260 to 370 K at concentrations from 0.421 to 5.78 mM, corresponding to the experimental conditions. The temperature profiles of the fractions of monomers and octamers showed a clear transition corresponding to aggregate dissociation. Low simulated transition temperatures were obtained for the peptides, which did not precipitate after incubation, as well as for the H-GNNQQNY-NH2 prion-protein fragment, which forms small fibrils. A substantial amount of inter-strand β-sheets was found in most of the systems. The results suggest that UNRES simulations can be used to assess peptide aggregation except for glutamine- and asparagine-rich peptides, for which a revision of the UNRES sidechain-sidechain interaction potentials appears necessary.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
29
|
Smardz P, Sieradzan AK, Krupa P. Mechanical Stability of Ribonuclease A Heavily Depends on the Redox Environment. J Phys Chem B 2022; 126:6240-6249. [PMID: 35975925 PMCID: PMC9421896 DOI: 10.1021/acs.jpcb.2c04718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Disulfide bonds are covalent bonds that connect nonlocal fragments of proteins, and they are unique post-translational modifications of proteins. They require the oxidizing environment to be stable, which occurs for example during oxidative stress; however, in a cell the reductive environment is maintained, lowering their stability. Despite many years of research on disulfide bonds, their role in the protein life cycle is not fully understood and seems to strictly depend on a system or process in which they are involved. In this article, coarse-grained UNited RESidue (UNRES), and all-atom Assisted Model Building with Energy Refinement (AMBER) force fields were applied to run a series of steered molecular dynamics (SMD) simulations of one of the most studied, but still not fully understood, proteins─ribonuclease A (RNase A). SMD simulations were performed to study the mechanical stability of RNase A in different oxidative-reductive environments. As disulfide bonds (and any other covalent bonds) cannot break/form in any classical all-atom force field, we applied additional restraints between sulfur atoms of reduced cysteines which were able to mimic the breaking of the disulfide bonds. On the other hand, the coarse-grained UNRES force field enables us to study the breaking/formation of the disulfide bonds and control the reducing/oxidizing environment owing to the presence of the designed distance/orientation-dependent potential. This study reveals that disulfide bonds have a strong influence on the mechanical stability of RNase A only in a highly oxidative environment. However, the local stability of the secondary structure seems to play a major factor in the overall stability of the protein. Both our thermal unfolding and mechanical stretching studies show that the most stable disulfide bond is Cys65-Cys72. The breaking of disulfide bonds Cys26-Cys84 and Cys58-Cys110 is associated with large force peaks. They are structural bridges, which are mostly responsible for stabilizing the RNase A conformation, while the presence of the remaining two bonds (Cys65-Cys72 and Cys40-Cys95) is most likely connected with the enzymatic activity rather than the structural stability of RNase A in the cytoplasm. Our results prove that disulfide bonds are indeed stabilizing fragments of the proteins, but their role is strongly redox environment-dependent.
Collapse
Affiliation(s)
- Pamela Smardz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Adam K Sieradzan
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Paweł Krupa
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
30
|
Weinreich J, Lemm D, von Rudorff GF, von Lilienfeld OA. Ab initio machine learning of phase space averages. J Chem Phys 2022; 157:024303. [PMID: 35840379 DOI: 10.1063/5.0095674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Equilibrium structures determine material properties and biochemical functions. We here propose to machine learn phase space averages, conventionally obtained by ab initio or force-field-based molecular dynamics (MD) or Monte Carlo (MC) simulations. In analogy to ab initio MD, our ab initio machine learning (AIML) model does not require bond topologies and, therefore, enables a general machine learning pathway to obtain ensemble properties throughout the chemical compound space. We demonstrate AIML for predicting Boltzmann averaged structures after training on hundreds of MD trajectories. The AIML output is subsequently used to train machine learning models of free energies of solvation using experimental data and to reach competitive prediction errors (mean absolute error ∼ 0.8 kcal/mol) for out-of-sample molecules-within milliseconds. As such, AIML effectively bypasses the need for MD or MC-based phase space sampling, enabling exploration campaigns of Boltzmann averages throughout the chemical compound space at a much accelerated pace. We contextualize our findings by comparison to state-of-the-art methods resulting in a Pareto plot for the free energy of solvation predictions in terms of accuracy and time.
Collapse
Affiliation(s)
- Jan Weinreich
- Faculty of Physics, University of Vienna, Kolingasse 14-16, AT-1090 Wien, Austria
| | - Dominik Lemm
- Faculty of Physics, University of Vienna, Kolingasse 14-16, AT-1090 Wien, Austria
| | | | | |
Collapse
|
31
|
Yasar F, Ray AJ, Hansmann UHE. Resolution exchange with tunneling for enhanced sampling of protein landscapes. Phys Rev E 2022; 106:015302. [PMID: 35974556 PMCID: PMC9389597 DOI: 10.1103/physreve.106.015302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Simulations of protein folding and protein association happen on timescales that are orders of magnitude larger than what can typically be covered in all-atom molecular dynamics simulations. Use of low-resolution models alleviates this problem but may reduce the accuracy of the simulations. We introduce a replica-exchange-based multiscale sampling technique that combines the faster sampling in coarse-grained simulations with the potentially higher accuracy of all-atom simulations. After testing the efficiency of our Resolution Exchange with Tunneling (ResET) in simulations of the Trp-cage protein, an often used model to evaluate sampling techniques in protein simulations, we use our approach to compare the landscape of wild-type and A2T mutant Aβ_{1-42} peptides. Our results suggest a mechanism by that the mutation of a small hydrophobic alanine (A) into a bulky polar threonine (T) may interfere with the self-assembly of Aβ fibrils.
Collapse
Affiliation(s)
- Fatih Yasar
- Dept. of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Alan J. Ray
- Dept. of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | | |
Collapse
|
32
|
Coarse-grained modeling of the calcium, sodium, magnesium and potassium cations interacting with proteins. J Mol Model 2022; 28:201. [PMID: 35748949 DOI: 10.1007/s00894-022-05154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/12/2022] [Indexed: 10/17/2022]
Abstract
Metal ions play important biological roles, e.g., activation or deactivation of enzymatic reactions and signal transduction. Moreover, they can stabilize protein structure, or even be actively involved in the protein folding process. Therefore, accurate treatment of the ions is crucial to model and investigate biological phenomena properly. In this work the coarse-grained UNRES (UNited RESidue) force field was extended to include the interactions between proteins and four alkali or alkaline earth metal cations of biological significance, i.e., calcium, magnesium, sodium and potassium. Additionally, chloride anions were introduced as counter-ions. Parameters were derived from all-atom simulations and incorporate water in an implicit manner. The new force field was tested on the set of the proteins and was able to reproduce the ion-binding preferences.
Collapse
|
33
|
Shi D, An K, Zhang H, Xu P, Bai C. Application of Coarse-Grained (CG) Models to Explore Conformational Pathway of Large-Scale Protein Machines. ENTROPY 2022; 24:e24050620. [PMID: 35626506 PMCID: PMC9140642 DOI: 10.3390/e24050620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022]
Abstract
Protein machines are clusters of protein assemblies that function in order to control the transfer of matter and energy in cells. For a specific protein machine, its working mechanisms are not only determined by the static crystal structures, but also related to the conformational transition dynamics and the corresponding energy profiles. With the rapid development of crystallographic techniques, the spatial scale of resolved structures is reaching up to thousands of residues, and the concomitant conformational changes become more and more complicated, posing a great challenge for computational biology research. Previously, a coarse-grained (CG) model aiming at conformational free energy evaluation was developed and showed excellent ability to reproduce the energy profiles by accurate electrostatic interaction calculations. In this study, we extended the application of the CG model to a series of large-scale protein machine systems. The spike protein trimer of SARS-CoV-2, ATP citrate lyase (ACLY) tetramer, and P4-ATPases systems were carefully studied and discussed as examples. It is indicated that the CG model is effective to depict the energy profiles of the conformational pathway between two endpoint structures, especially for large-scale systems. Both the energy change and energy barrier between endpoint structures provide reasonable mechanism explanations for the associated biological processes, including the opening of receptor binding domain (RBD) of spike protein, the phospholipid transportation of P4-ATPase, and the loop translocation of ACLY. Taken together, the CG model provides a suitable alternative in mechanistic studies related to conformational change in large-scale protein machines.
Collapse
Affiliation(s)
- Danfeng Shi
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Ke An
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Honghui Zhang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
| | - Peiyi Xu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
- Correspondence:
| |
Collapse
|
34
|
Zimmermann MT. Molecular Modeling is an Enabling Approach to Complement and Enhance Channelopathy Research. Compr Physiol 2022; 12:3141-3166. [PMID: 35578963 DOI: 10.1002/cphy.c190047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hundreds of human membrane proteins form channels that transport necessary ions and compounds, including drugs and metabolites, yet details of their normal function or how function is altered by genetic variants to cause diseases are often unknown. Without this knowledge, researchers are less equipped to develop approaches to diagnose and treat channelopathies. High-resolution computational approaches such as molecular modeling enable researchers to investigate channelopathy protein function, facilitate detailed hypothesis generation, and produce data that is difficult to gather experimentally. Molecular modeling can be tailored to each physiologic context that a protein may act within, some of which may currently be difficult or impossible to assay experimentally. Because many genomic variants are observed in channelopathy proteins from high-throughput sequencing studies, methods with mechanistic value are needed to interpret their effects. The eminent field of structural bioinformatics integrates techniques from multiple disciplines including molecular modeling, computational chemistry, biophysics, and biochemistry, to develop mechanistic hypotheses and enhance the information available for understanding function. Molecular modeling and simulation access 3D and time-dependent information, not currently predictable from sequence. Thus, molecular modeling is valuable for increasing the resolution with which the natural function of protein channels can be investigated, and for interpreting how genomic variants alter them to produce physiologic changes that manifest as channelopathies. © 2022 American Physiological Society. Compr Physiol 12:3141-3166, 2022.
Collapse
Affiliation(s)
- Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
35
|
Blanco MA. Computational models for studying physical instabilities in high concentration biotherapeutic formulations. MAbs 2022; 14:2044744. [PMID: 35282775 PMCID: PMC8928847 DOI: 10.1080/19420862.2022.2044744] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Computational prediction of the behavior of concentrated protein solutions is particularly advantageous in early development stages of biotherapeutics when material availability is limited and a large set of formulation conditions needs to be explored. This review provides an overview of the different computational paradigms that have been successfully used in modeling undesirable physical behaviors of protein solutions with a particular emphasis on high-concentration drug formulations. This includes models ranging from all-atom simulations, coarse-grained representations to macro-scale mathematical descriptions used to study physical instability phenomena of protein solutions such as aggregation, elevated viscosity, and phase separation. These models are compared and summarized in the context of the physical processes and their underlying assumptions and limitations. A detailed analysis is also given for identifying protein interaction processes that are explicitly or implicitly considered in the different modeling approaches and particularly their relations to various formulation parameters. Lastly, many of the shortcomings of existing computational models are discussed, providing perspectives and possible directions toward an efficient computational framework for designing effective protein formulations.
Collapse
Affiliation(s)
- Marco A. Blanco
- Materials and Biophysical Characterization, Analytical R & D, Merck & Co., Inc, Kenilworth, NJ USA
| |
Collapse
|
36
|
Vyas P, Kumar PBS, Das SL. Sorting of proteins with shape and curvature anisotropy on a lipid bilayer tube. SOFT MATTER 2022; 18:1653-1665. [PMID: 35132986 DOI: 10.1039/d2sm00077f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Curvature induced sorting of lipid membrane bound proteins has been widely studied through experiments that induce curvature variation in a giant unilamellar lipid-bilayer vesicle with adsorbed proteins by pulling thin cylindrical tethers. In the theoretical space, this has been supplemented with models that capture curvature dependent interaction between membrane and idealized protein particles, through free energy contributions. Many membrane proteins such as the BAR domain proteins are known to have extremely anisotropic shapes and soft interacting potentials, whereas the idealizations of protein particles explored in models have only assumed them as hard disk-like particles with curvature anisotropy. Here, we present a model of sorting of the proteins while including the effects of softness in their interaction potentials, shape anisotropy in the protein structure, and curvature anisotropy in the interactions with the membrane. This is based on a clean separation of free energy contributions from non-ideal fluid behavior of soft anisotropic particles and curvature interactions between proteins and membranes. We probe the behavior of the sorting function under limiting conditions and show that it converges to the previously derived models. In addition to this, we present a comparison of the variation in sorting ratio due to the observed variation in the shape parameter values in known membrane proteins. Finally, using published experimental data for membrane proteins, we perform fitting and derive model parameters. We observe that shape anisotropy adversely affects the sorting of proteins to a high curvature region, whereas curvature anisotropy and softer interaction between proteins favor sorting.
Collapse
Affiliation(s)
- Pranav Vyas
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA.
| | - P B Sunil Kumar
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad 678623, India
| | - Sovan Lal Das
- Physical and Chemical Biology Laboratory and Department of Mechanical Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| |
Collapse
|
37
|
Modeling the Structure, Dynamics, and Transformations of Proteins with the UNRES Force Field. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2376:399-416. [PMID: 34845623 DOI: 10.1007/978-1-0716-1716-8_23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The physics-based united-residue (UNRES) model of proteins ( www.unres.pl ) has been designed to carry out large-scale simulations of protein folding. The force field has been derived and parameterized based on the principles of statistical-mechanics, which makes it independent of structural databases and applicable to treat nonstandard situations such as, proteins that contain D-amino-acid residues. Powered by Langevin dynamics and its replica-exchange extensions, UNRES has found a variety of applications, including ab initio and database-assisted protein-structure prediction, simulating protein-folding pathways, exploring protein free-energy landscapes, and solving biological problems. This chapter provides a summary of UNRES and a guide for potential users regarding the application of the UNRES package in a variety of research tasks.
Collapse
|
38
|
Rojas AV, Maisuradze GG, Scheraga HA, Liwo A. Probing Protein Aggregation Using the Coarse-Grained UNRES Force Field. Methods Mol Biol 2022; 2340:79-104. [PMID: 35167071 DOI: 10.1007/978-1-0716-1546-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein aggregation is the cause of many, often lethal, diseases, including the Alzheimer's, Parkinson's, and Huntington's diseases, and familial amyloidosis. Theoretical investigation of the mechanism of this process, including the structures of the oligomeric intermediates which are the most toxic, is difficult because of long time scale of aggregation. Coarse-grained models, which enable us to extend the simulation time scale by three or more orders of magnitude, are, therefore, of great advantage in such studies. In this chapter, we describe the application of the physics-based UNited RESidue (UNRES) force field developed in our laboratory to study protein aggregation, in both free simulations and simulations of aggregation propagation from an existing template (seed), and illustrate it with the examples of Aβ-peptide aggregation and Aβ-peptide-assisted aggregation of the peptides derived from the repeat domains of tau (TauRD).
Collapse
Affiliation(s)
- Ana V Rojas
- Schrodinger Inc., 120 West 45th Street New York, New York, 10036, NY, USA
| | - Gia G Maisuradze
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, 14853-1301, NY, USA
| | - Harold A Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, 14853-1301, NY, USA
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk, 80-308, Poland.
| |
Collapse
|
39
|
Co NT, Li MS, Krupa P. Computational Models for the Study of Protein Aggregation. Methods Mol Biol 2022; 2340:51-78. [PMID: 35167070 DOI: 10.1007/978-1-0716-1546-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein aggregation has been studied by many groups around the world for many years because it can be the cause of a number of neurodegenerative diseases that have no effective treatment. Obtaining the structure of related fibrils and toxic oligomers, as well as describing the pathways and main factors that govern the self-organization process, is of paramount importance, but it is also very difficult. To solve this problem, experimental and computational methods are often combined to get the most out of each method. The effectiveness of the computational approach largely depends on the construction of a reasonable molecular model. Here we discussed different versions of the four most popular all-atom force fields AMBER, CHARMM, GROMOS, and OPLS, which have been developed for folded and intrinsically disordered proteins, or both. Continuous and discrete coarse-grained models, which were mainly used to study the kinetics of aggregation, are also summarized.
Collapse
Affiliation(s)
- Nguyen Truong Co
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
- Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
| | - Pawel Krupa
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
40
|
Shino G, Takada S. Modeling DNA Opening in the Eukaryotic Transcription Initiation Complexes via Coarse-Grained Models. Front Mol Biosci 2021; 8:772486. [PMID: 34869598 PMCID: PMC8636136 DOI: 10.3389/fmolb.2021.772486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 01/24/2023] Open
Abstract
Recently, the molecular mechanisms of transcription initiation have been intensively studied. Especially, the cryo-electron microscopy revealed atomic structure details in key states in the eukaryotic transcription initiation. Yet, the dynamic processes of the promoter DNA opening in the pre-initiation complex remain obscured. In this study, based on the three cryo-electron microscopic yeast structures for the closed, open, and initially transcribing complexes, we performed multiscale molecular dynamics (MD) simulations to model structures and dynamic processes of DNA opening. Combining coarse-grained and all-atom MD simulations, we first obtained the atomic model for the DNA bubble in the open complexes. Then, in the MD simulation from the open to the initially transcribing complexes, we found a previously unidentified intermediate state which is formed by the bottleneck in the fork loop 1 of Pol II: The loop opening triggered the escape from the intermediate, serving as a gatekeeper of the promoter DNA opening. In the initially transcribing complex, the non-template DNA strand passes a groove made of the protrusion, the lobe, and the fork of Rpb2 subunit of Pol II, in which several positively charged and highly conserved residues exhibit key interactions to the non-template DNA strand. The back-mapped all-atom models provided further insights on atomistic interactions such as hydrogen bonding and can be used for future simulations.
Collapse
Affiliation(s)
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Vaiwala R, Ayappa KG. A generic force field for simulating native protein structures using dissipative particle dynamics. SOFT MATTER 2021; 17:9772-9785. [PMID: 34651150 DOI: 10.1039/d1sm01194d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A coarse-grained force field for molecular dynamics simulations of the native structures of proteins in a dissipative particle dynamics (DPD) framework is developed. The parameters for bonded interactions are derived by mapping the bonds and angles for 20 amino acids onto target distributions obtained from fully atomistic simulations in explicit solvent. A dual-basin potential is introduced for stabilizing backbone angles, to cover a wide spectrum of protein secondary structures. The backbone dihedral potential enables folding of the protein from an unfolded initial state to the folded native structure. The proposed force field is validated by evaluating the structural properties of several model peptides and proteins including the SARS-CoV-2 fusion peptide, consisting of α-helices, β-sheets, loops and turns. Detailed comparisons with fully atomistic simulations are carried out to assess the ability of the proposed force field to stabilize the different secondary structures present in proteins. The compact conformations of the native states were evident from the radius of gyration and the high intensity peaks of the root mean square deviation histograms, which were found to be within 0.4 nm. The Ramachandran-like energy landscape on the phase space of backbone angles (θ) and dihedrals (ϕ) effectively captured the conformational phase space of α-helices at ∼(ϕ = 50°,θ = 90°) and β-strands at ∼(ϕ = ±180°,θ = 90-120°). Furthermore, the residue-residue native contacts were also well reproduced by the proposed DPD model. The applicability of the model to multidomain complexes was assessed using lysozyme and a large α-helical bacterial pore-forming toxin, cytolysin A. Our study illustrates that the proposed force field is generic, and can potentially be extended for efficient in silico investigations of membrane bound polypeptides and proteins using DPD simulations.
Collapse
Affiliation(s)
- Rakesh Vaiwala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India.
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
42
|
Dhamankar S, Webb MA. Chemically specific coarse‐graining of polymers: Methods and prospects. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satyen Dhamankar
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey USA
| | - Michael A. Webb
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey USA
| |
Collapse
|
43
|
Liwo A, Czaplewski C, Sieradzan AK, Lipska AG, Samsonov SA, Murarka RK. Theory and Practice of Coarse-Grained Molecular Dynamics of Biologically Important Systems. Biomolecules 2021; 11:1347. [PMID: 34572559 PMCID: PMC8465211 DOI: 10.3390/biom11091347] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
Molecular dynamics with coarse-grained models is nowadays extensively used to simulate biomolecular systems at large time and size scales, compared to those accessible to all-atom molecular dynamics. In this review article, we describe the physical basis of coarse-grained molecular dynamics, the coarse-grained force fields, the equations of motion and the respective numerical integration algorithms, and selected practical applications of coarse-grained molecular dynamics. We demonstrate that the motion of coarse-grained sites is governed by the potential of mean force and the friction and stochastic forces, resulting from integrating out the secondary degrees of freedom. Consequently, Langevin dynamics is a natural means of describing the motion of a system at the coarse-grained level and the potential of mean force is the physical basis of the coarse-grained force fields. Moreover, the choice of coarse-grained variables and the fact that coarse-grained sites often do not have spherical symmetry implies a non-diagonal inertia tensor. We describe selected coarse-grained models used in molecular dynamics simulations, including the most popular MARTINI model developed by Marrink's group and the UNICORN model of biological macromolecules developed in our laboratory. We conclude by discussing examples of the application of coarse-grained molecular dynamics to study biologically important processes.
Collapse
Affiliation(s)
- Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (C.C.); (A.K.S.); (A.G.L.); (S.A.S.)
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (C.C.); (A.K.S.); (A.G.L.); (S.A.S.)
| | - Adam K. Sieradzan
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (C.C.); (A.K.S.); (A.G.L.); (S.A.S.)
| | - Agnieszka G. Lipska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (C.C.); (A.K.S.); (A.G.L.); (S.A.S.)
| | - Sergey A. Samsonov
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (C.C.); (A.K.S.); (A.G.L.); (S.A.S.)
| | - Rajesh K. Murarka
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India;
| |
Collapse
|
44
|
Antoniak A, Biskupek I, Bojarski KK, Czaplewski C, Giełdoń A, Kogut M, Kogut MM, Krupa P, Lipska AG, Liwo A, Lubecka EA, Marcisz M, Maszota-Zieleniak M, Samsonov SA, Sieradzan AK, Ślusarz MJ, Ślusarz R, Wesołowski PA, Ziȩba K. Modeling protein structures with the coarse-grained UNRES force field in the CASP14 experiment. J Mol Graph Model 2021; 108:108008. [PMID: 34419932 DOI: 10.1016/j.jmgm.2021.108008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022]
Abstract
The UNited RESidue (UNRES) force field was tested in the 14th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP14), in which larger oligomeric and multimeric targets were present compared to previous editions. Three prediction modes were tested (i) ab initio (the UNRES group), (ii) contact-assisted (the UNRES-contact group), and (iii) template-assisted (the UNRES-template group). For most of the targets, the contact restraints were derived from the server models top-ranked by the DeepQA method, while the DNCON2 method was used for 11 targets. Our consensus-fragment procedure was used to run template-assisted predictions. Each group also processed the Nuclear Magnetic Resonance (NMR)- and Small Angle X-Ray Scattering (SAXS)-data assisted targets. The average Global Distance Test Total Score (GDT_TS) of the 'Model 1' predictions were 29.17, 39.32, and 56.37 for the UNRES, UNRES-contact, and UNRES-template predictions, respectively, increasing by 0.53, 2.24, and 3.76, respectively, compared to CASP13. It was also found that the GDT_TS of the UNRES models obtained in ab initio mode and in the contact-assisted mode decreases with the square root of chain length, while the exponent in this relationship is 0.20 for the UNRES-template group models and 0.11 for the best performing AlphaFold2 models, which suggests that incorporation of database information, which stems from protein evolution, brings in long-range correlations, thus enabling the correction of force-field inaccuracies.
Collapse
Affiliation(s)
- Anna Antoniak
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Iga Biskupek
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Krzysztof K Bojarski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Artur Giełdoń
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Mateusz Kogut
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Małgorzata M Kogut
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Paweł Krupa
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, Warsaw, PL-02668, Poland
| | - Agnieszka G Lipska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland; School of Computational Sciences, Korea Institute for Advanced Study, 87 Hoegiro, Dongdaemun-gu, 130-722, Seoul, Republic of Korea.
| | - Emilia A Lubecka
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Mateusz Marcisz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland; Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, ul. Abrahama 58, 80-307, Gdańsk, Poland
| | | | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Adam K Sieradzan
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Magdalena J Ślusarz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Rafał Ślusarz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Patryk A Wesołowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland; Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, ul. Abrahama 58, 80-307, Gdańsk, Poland
| | - Karolina Ziȩba
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|
45
|
Kogut M, Gong Z, Tang C, Liwo A. Pseudopotentials for coarse-grained cross-link-assisted modeling of protein structures. J Comput Chem 2021; 42:2054-2067. [PMID: 34402552 DOI: 10.1002/jcc.26736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 11/08/2022]
Abstract
Pseudopotentials for the chemical cross-links comprising the glutamic- and aspartic-acid side chains bridged with adipic- (ADH) or pimelic-acid hydrazide (PDH), and the lysine side chains bridged with glutaric (BS2 G) or suberic acid (BS3 ) for coarse-grained cross-link-assisted simulations were determined by canonical molecular dynamics with the Amber14sb force field. The potentials depend on the distance between side-chain ends and on side-chain orientation, this preventing from making cross-link contacts across the globule in simulations. The potentials were implemented in the UNRES coarse-grained force field and their effect on the quality of models was assessed with 11 monomeric and 1 dimeric proteins, using synthetic or experimental cross-link data. Simulations with the new potentials resulted in improvement of the generated models compared to unrestrained simulations in more instances compared to those with the statistical potentials.
Collapse
Affiliation(s)
- Mateusz Kogut
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Zhou Gong
- Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
46
|
Lubecka EA, Liwo A. ESCASA: Analytical estimation of atomic coordinates from coarse-grained geometry for nuclear-magnetic-resonance-assisted protein structure modeling. I. Backbone and H β protons. J Comput Chem 2021; 42:1579-1589. [PMID: 34048074 DOI: 10.1002/jcc.26695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
A method for the estimation of coordinates of atoms in proteins from coarse-grained geometry by simple analytical formulas (ESCASA), for use in nuclear-magnetic-resonance (NMR) data-assisted coarse-grained simulations of proteins is proposed. In this paper, the formulas for the backbone Hα and amide (HN ) protons, and the side-chain Hβ protons, given the Cα -trace, have been derived and parameterized, by using the interproton distances calculated from a set of 140 high-resolution non-homologous protein structures. The mean standard deviation over all types of proton pairs in the set was 0.44 Å after fitting. Validation against a set of 41 proteins with NMR-determined structures, which were not considered in parameterization, resulted in average standard deviation from average proton-proton distances of the NMR-determined structures of 0.25 Å, compared to 0.21 Å obtained with the PULCHRA all-atom-chain reconstruction algorithm and to the 0.12 Å standard deviation of the average-structure proton-proton distance of NMR-determined ensembles. The formulas provide analytical forces and can, therefore, be used in coarse-grained molecular dynamics.
Collapse
Affiliation(s)
- Emilia A Lubecka
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
47
|
Krupa P, Karczyńska AS, Mozolewska MA, Liwo A, Czaplewski C. UNRES-Dock-protein-protein and peptide-protein docking by coarse-grained replica-exchange MD simulations. Bioinformatics 2021; 37:1613-1615. [PMID: 33079977 DOI: 10.1093/bioinformatics/btaa897] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/04/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The majority of the proteins in living organisms occur as homo- or hetero-multimeric structures. Although there are many tools to predict the structures of single-chain proteins or protein complexes with small ligands, peptide-protein and protein-protein docking is more challenging. In this work, we utilized multiplexed replica-exchange molecular dynamics (MREMD) simulations with the physics-based heavily coarse-grained UNRES model, which provides more than a 1000-fold simulation speed-up compared with all-atom approaches to predict structures of protein complexes. RESULTS We present a new protein-protein and peptide-protein docking functionality of the UNRES package, which includes a variable degree of conformational flexibility. UNRES-Dock protocol was tested on a set of 55 complexes with size from 43 to 587 amino-acid residues, showing that structures of the complexes can be predicted with good quality, if the sampling of the conformational space is sufficient, especially for flexible peptide-protein systems. The developed automatized protocol has been implemented in the standalone UNRES package and in the UNRES server. AVAILABILITY AND IMPLEMENTATION UNRES server: http://unres-server.chem.ug.edu.pl; UNRES package and data used in testing of UNRES-Dock: http://unres.pl. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Paweł Krupa
- Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland.,Institute of Physics, Polish Academy of Sciences, Warsaw 02-668, Poland
| | - Agnieszka S Karczyńska
- Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland.,University of Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble 38000, France
| | | | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | | |
Collapse
|
48
|
Lin X, Qi Y, Latham AP, Zhang B. Multiscale modeling of genome organization with maximum entropy optimization. J Chem Phys 2021; 155:010901. [PMID: 34241389 PMCID: PMC8253599 DOI: 10.1063/5.0044150] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) organization of the human genome plays an essential role in all DNA-templated processes, including gene transcription, gene regulation, and DNA replication. Computational modeling can be an effective way of building high-resolution genome structures and improving our understanding of these molecular processes. However, it faces significant challenges as the human genome consists of over 6 × 109 base pairs, a system size that exceeds the capacity of traditional modeling approaches. In this perspective, we review the progress that has been made in modeling the human genome. Coarse-grained models parameterized to reproduce experimental data via the maximum entropy optimization algorithm serve as effective means to study genome organization at various length scales. They have provided insight into the principles of whole-genome organization and enabled de novo predictions of chromosome structures from epigenetic modifications. Applications of these models at a near-atomistic resolution further revealed physicochemical interactions that drive the phase separation of disordered proteins and dictate chromatin stability in situ. We conclude with an outlook on the opportunities and challenges in studying chromosome dynamics.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yifeng Qi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew P. Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
49
|
Molecular Analysis of Streptomycin Resistance Genes in Clinical Strains of Mycobacterium tuberculosis and Biocomputational Analysis of the MtGidB L101F Variant. Antibiotics (Basel) 2021; 10:antibiotics10070807. [PMID: 34356728 PMCID: PMC8300841 DOI: 10.3390/antibiotics10070807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022] Open
Abstract
Globally, tuberculosis (TB) remains a prevalent threat to public health. In 2019, TB affected 10 million people and caused 1.4 million deaths. The major challenge for controlling this infectious disease is the emergence and spread of drug-resistant Mycobacterium tuberculosis, the causative agent of TB. The antibiotic streptomycin is not a current first-line anti-TB drug. However, WHO recommends its use in patients infected with a streptomycin-sensitive strain. Several mutations in the M. tuberculosisrpsL, rrs and gidB genes have proved association with streptomycin resistance. In this study, we performed a molecular analysis of these genes in clinical isolates to determine the prevalence of known or novel mutations. Here, we describe the genetic analysis outcome. Furthermore, a biocomputational analysis of the MtGidB L101F variant, the product of a novel mutation detected in gidB during molecular analysis, is also reported as a theoretical approach to study the apparent genotype-phenotype association.
Collapse
|
50
|
Giulini M, Rigoli M, Mattiotti G, Menichetti R, Tarenzi T, Fiorentini R, Potestio R. From System Modeling to System Analysis: The Impact of Resolution Level and Resolution Distribution in the Computer-Aided Investigation of Biomolecules. Front Mol Biosci 2021; 8:676976. [PMID: 34164432 PMCID: PMC8215203 DOI: 10.3389/fmolb.2021.676976] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
The ever increasing computer power, together with the improved accuracy of atomistic force fields, enables researchers to investigate biological systems at the molecular level with remarkable detail. However, the relevant length and time scales of many processes of interest are still hardly within reach even for state-of-the-art hardware, thus leaving important questions often unanswered. The computer-aided investigation of many biological physics problems thus largely benefits from the usage of coarse-grained models, that is, simplified representations of a molecule at a level of resolution that is lower than atomistic. A plethora of coarse-grained models have been developed, which differ most notably in their granularity; this latter aspect determines one of the crucial open issues in the field, i.e. the identification of an optimal degree of coarsening, which enables the greatest simplification at the expenses of the smallest information loss. In this review, we present the problem of coarse-grained modeling in biophysics from the viewpoint of system representation and information content. In particular, we discuss two distinct yet complementary aspects of protein modeling: on the one hand, the relationship between the resolution of a model and its capacity of accurately reproducing the properties of interest; on the other hand, the possibility of employing a lower resolution description of a detailed model to extract simple, useful, and intelligible information from the latter.
Collapse
Affiliation(s)
- Marco Giulini
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Marta Rigoli
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Giovanni Mattiotti
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Roberto Menichetti
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Thomas Tarenzi
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Raffaele Fiorentini
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Raffaello Potestio
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| |
Collapse
|