1
|
Martínez A. Toxicity of persistent organic pollutants: a theoretical study. J Mol Model 2024; 30:97. [PMID: 38451367 PMCID: PMC11310291 DOI: 10.1007/s00894-024-05890-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
CONTEXT Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are two families of persistent organic pollutants that are dangerous as they remain in the atmosphere for long periods and are toxic for humans and animals. They are found all over the world, including the penguins of Antarctica. One of the mechanisms that explains the toxicity of these compounds is related to oxidative stress. The main idea of this theoretical research is to use conceptual density functional theory as a theory of chemical reactivity to analyze the oxidative stress that PCBs and PBDEs can produce. The electron transfer properties as well as the interaction with DNA nitrogenous bases of nine PCBs and ten PBDEs found in Antarctic penguins are investigated. From this study, it can be concluded that compounds with more chlorine or bromine atoms are more oxidizing and produce more oxidative stress. These molecules also interact directly with the nitrogenous bases of DNA, forming hydrogen bonds, and this may be an explanation for the toxicity. Since quinone-type metabolites of PCBs and PBDEs can cause neurotoxicity, examples of quinones are also investigated. Condensed Fukui functions are included to analyze local reactivity. These results are important as the reactivity of these compounds helps to explain the toxicity of PCBs and PBDEs. METHODS All DFT computations were performed using Gaussian16 at M06-2x/6-311 + g(2d,p) level of theory without symmetry constraints. Electro-donating (ω-) and electro-accepting (ω +) powers were used as global response functions and condensed Fukui functions as local parameters of reactivity.
Collapse
Affiliation(s)
- Ana Martínez
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S.N. Ciudad Universitaria, 04510, CDMX, CP, Mexico.
| |
Collapse
|
2
|
Shephard AM, Hund AK, Snell-Rood EC. Metabolic stress as a driver of life-history plasticity: flight promotes longevity and antioxidant production in monarch butterflies. Proc Biol Sci 2023; 290:20231616. [PMID: 37817587 PMCID: PMC10565393 DOI: 10.1098/rspb.2023.1616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
Life-history theory predicts that increased investment in traits related to reproduction will be associated with a reduced ability to invest in survival or longevity. One mechanistic explanation for this trade-off is that metabolic stress generated from current fitness activities (e.g. reproduction or locomotion) will increase somatic damage, leading to reduced longevity. Yet, there has been limited support for this damage-based hypothesis. A possible explanation is that individuals can respond to increases in metabolic stress by plastically inducing cellular maintenance responses, which may increase, rather than decrease, longevity. We tested this possibility by experimentally manipulating investment in flight activity (a metabolic stressor) in the migratory monarch butterfly (Danaus plexippus), a species whose reproductive fitness is dependent on survival through a period of metabolically intensive migratory flight. Consistent with the idea that metabolic stress stimulated investment in self-maintenance, increased flight activity enhanced monarch butterfly longevity and somatic tissue antioxidant capacity, likely at a cost to reproductive investment. Our study implicates a role for metabolic stress as a driver of life-history plasticity and supports a model where current engagement in metabolically stressful activities promotes somatic survival by stimulating investment in self-maintenance processes.
Collapse
Affiliation(s)
- Alexander M. Shephard
- Department of Ecology, Evolution, and Behavior, University of Minnesota – Twin Cities, Saint Paul, MN 55108, USA
| | - Amanda K. Hund
- Department of Ecology, Evolution, and Behavior, University of Minnesota – Twin Cities, Saint Paul, MN 55108, USA
| | - Emilie C. Snell-Rood
- Department of Ecology, Evolution, and Behavior, University of Minnesota – Twin Cities, Saint Paul, MN 55108, USA
| |
Collapse
|
3
|
Lewis-Luján LM, Rosas-Burgos EC, Ezquerra-Brauer JM, Burboa-Zazueta MG, Assanga SBI, del Castillo-Castro T, Penton G, Plascencia-Jatomea M. Inhibition of Pathogenic Bacteria and Fungi by Natural Phenoxazinone from Octopus Ommochrome Pigments. J Microbiol Biotechnol 2022; 32:989-1002. [PMID: 35909165 PMCID: PMC9628961 DOI: 10.4014/jmb.2206.06043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022]
Abstract
Cephalopods, in particular octopus (Octopus vulgaris), have the ability to alter their appearance or body pattern by showing a wide range of camouflage by virtue of their chromatophores, which contain nanostructured granules of ommochrome pigments. Recently, the antioxidant and antimicrobial activities of ommochromes have become of great interest; therefore, in this study, the pH-dependent redox effect of the extraction solvent on the antioxidant potential and the structural characterization of the pigments were evaluated. Cell viability was determined by the microdilution method in broth by turbidity, MTT, resazurin, as well as fluorescence microscopy kit assays. A Live/Dead Double Staining Kit and an ROS Kit were used to elucidate the possible inhibitory mechanisms of ommochromes against bacterial and fungal strains. The results obtained revealed that the redox state alters the color changes of the ommochromes and is dependent on the pH in the extraction solvent. Natural phenoxazinone (ommochromes) is moderately toxic to the pathogens Staphylococcus aureus, Bacillus subtilis, Salmonella Typhimurium and Candida albicans, while the species Pseudomonas aeruginosa and Pseudomonas fluorescens, and the filamentous fungi Aspergillus parasiticus, Alternaria spp. and Fusarium verticillioides, were tolerant to these pigments. UV/visible spectral scanning and Fourier- transform infrared spectroscopy (FTIR) suggest the presence of reduced ommatin in methanol/ HCl extract with high intrinsic fluorescence.
Collapse
Affiliation(s)
- Lidianys María Lewis-Luján
- Laboratorio de Microbiología y Micotoxinas, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - Ema Carina Rosas-Burgos
- Laboratorio de Microbiología y Micotoxinas, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - Josafat Marina Ezquerra-Brauer
- Laboratorio de Microbiología y Micotoxinas, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - María Guadalupe Burboa-Zazueta
- Departamento de Investigaciones Científicas y Tecnológicas, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, México
| | - Simon Bernard Iloki Assanga
- Department of Biological Chemical Sciences. Sonora University, Blvd. Luis Encinas y Rosales. Col. Centro, 83000 Hermosillo, Sonora, México
| | - Teresa del Castillo-Castro
- Department of Research on Polymers and Materials, Sonora University. Blvd. Luis Encinas y Rosales. Col. Centro, 83000 Hermosillo, Sonora, México
| | - Giselle Penton
- Centro de Ingeniería Genética y Biotecnología, Ave 31 entre 158 y 190, Cubanacán, Playa, Habana, CP 6162, Cuba
| | - Maribel Plascencia-Jatomea
- Laboratorio de Microbiología y Micotoxinas, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico,Corresponding author Phone/Fax: +52-662-259-2207 E-mail:
| |
Collapse
|
4
|
Lewis LLM, Dörschmann P, Seeba C, Thalenhorst T, Roider J, Iloki Assanga SB, Ruiz JCG, Del Castillo Castro T, Rosas-Burgos EC, Plascencia-Jatomea M, Ezquerra Brauer JM, Klettner A. Properties of Cephalopod Skin Ommochromes to Inhibit Free Radicals, and the Maillard Reaction and Retino-Protective Mechanisms in Cellular Models Concerning Oxidative Stress, Angiogenesis, and Inflammation. Antioxidants (Basel) 2022; 11:antiox11081574. [PMID: 36009293 PMCID: PMC9404994 DOI: 10.3390/antiox11081574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Ommochromes are pigments of invertebrates that exhibit oxidative stress protection. The aim of this study was to investigate ommochromes extracted from cephalopod’s skin for their ability to inhibit age-related-macular degeneration (AMD)-related factors such as H2O2-induced and iron-dependent oxidative stress (ferroptosis and erastin), accumulation of advanced glycation end-products (AGEs), as well as vascular endothelial growth factor (VEGF), and inflammatory cytokines (interleukin 6 and interleukin 8) secretion. As cell systems, we used primary porcine retinal pigment epithelium (RPE), human retinal pigment epithelium cell line ARPE-19 and uveal melanoma cell line OMM-1. In vitro, ommochromes produced an antiglycation effect by the inhibition of fructosylation reaction. The ommochromes showed protective effects against erastin- induced cell death in ARPE-19. In addition, in long-term stimulation (7 days) ommochromes decreased constitutively secreted VEGF, as well as interleukin 6 and interleukin 8 induced by Poly I:C in primary RPE. No relevant effects were detected in OMM-1 cells. The effects are dependent on the cell system, time of exposition, and concentration. This substance is of interest for further research concerning age-related macular degeneration.
Collapse
Affiliation(s)
- Luján Lidianys María Lewis
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Philipp Dörschmann
- Department of Ophthalmology, University of Kiel, University Medical Center, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Charlotte Seeba
- Department of Ophthalmology, University of Kiel, University Medical Center, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Tabea Thalenhorst
- Department of Ophthalmology, University of Kiel, University Medical Center, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Johann Roider
- Department of Ophthalmology, University of Kiel, University Medical Center, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Simon Bernard Iloki Assanga
- Department of Biological Chemical Sciences, Sonora University, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Juan Carlos Gálvez Ruiz
- Department of Biological Chemical Sciences, Sonora University, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Teresa Del Castillo Castro
- Department of Research on Polymers and Materials, Sonora University, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Ema Carina Rosas-Burgos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Maribel Plascencia-Jatomea
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Josafat Marina Ezquerra Brauer
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Alexa Klettner
- Department of Ophthalmology, University of Kiel, University Medical Center, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
- Correspondence: ; Tel.: +49-431-500-24283
| |
Collapse
|
5
|
Manzanilla B, Robles J. Antiradical properties of curcumin, caffeic acid phenethyl ester, and chicoric acid: a DFT study. J Mol Model 2022; 28:68. [PMID: 35218436 DOI: 10.1007/s00894-022-05056-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/11/2022] [Indexed: 12/26/2022]
Abstract
The antiradical properties and possible mechanisms of action of the tautomers of curcumin, caffeic acid phenethyl ester (CAPE), and chicoric acid (CA) have been studied within density functional theory (DFT). We calculated global chemical reactivity descriptors from conceptual DFT, pKa, bioavailability, and toxicity to evaluate the antiradical properties and characterize these species. Our final level of theory is the M06-2X functional with the 6-31 + G* basis set; we selected this level after performing a benchmark calibration and validation among different levels. Solvent effects were modeled via the continuum solvation model based on density (SMD). We used water and pentyl ethanoate as solvents to simulate the physiological conditions. The free radical scavenger capacity was analyzed for three possible oxidative stress mechanisms: single electron transfer (SET), hydrogen atom transfer (HAT), and xanthine oxidase (XO) inhibition. The results indicate that neutral curcumin, CA, and CAPE behave as antireductants. The most favorable mechanism turns out to be HAT, where CA and CAPE stand out. In conclusion, our DFT study strongly indicates that neutral curcumin, CAPE, and CA would very likely perform well as antiradical drugs with recommended therapeutic use, supported by their non-toxic nature.
Collapse
Affiliation(s)
- Brenda Manzanilla
- Departamento de Farmacia, DCNE, Universidad de Guanajuato, Noria Alta S/N. Col. Noria Alta, Gto., C. P. 36050, Guanajuato, México
| | - Juvencio Robles
- Departamento de Farmacia, DCNE, Universidad de Guanajuato, Noria Alta S/N. Col. Noria Alta, Gto., C. P. 36050, Guanajuato, México.
| |
Collapse
|
6
|
ESPARZA-ESPINOZA DM, PLASCENCIA-JATOMEA M, LÓPEZ-SAIZ CM, PARRA-VERGARA NV, CARBONELL-BARRACHINA AA, CÁRDENAS-LÓPEZ J, EZQUERRA-BRAUER JM. Improving the shelf life of chicken burgers using Octopus vulgaris and Dosidicus gigas skin pigment extracts. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.18221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
ESPARZA-ESPINOZA DM, SANTACRUZ-ORTEGA HDC, CHAN-HIGUERA JE, CÁRDENAS-LÓPEZ JL, BURGOS-HERNÁNDEZ A, CARBONELL-BARRACHINA ÁA, EZQUERRA-BRAUER JM. Chemical structure and antioxidant activity of cephalopod skin ommochrome pigment extracts. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.56520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Figon F, Casas J. The integrative biology of pigment organelles, a quantum chemical approach. Integr Comp Biol 2021; 61:1490-1501. [PMID: 33940609 DOI: 10.1093/icb/icab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Coloration is a complex phenotypic trait involving both physical and chemical processes at a multiscale level, from molecules to tissues. Pigments, whose main property is to absorb specific wavelengths of visible light, are usually deposited in specialized organelles or complex matrices comprising proteins, metals, ions and redox compounds, among others. By modulating electronic properties and stability, interactions between pigments and these molecular actors can lead to color tuning. Furthermore, pigments are not only important for visual effects but also provide other critical functions, such as detoxification and antiradical activity. Hence, integrative studies of pigment organelles are required to understand how pigments interact with their cellular environment. In this review, we show how quantum chemistry, a computational method that models the molecular and optical properties of pigments, has provided key insights into the mechanisms by which pigment properties, from color to reactivity, are modulated by their organellar environment. These results allow to rationalize and to predict the way pigments behave in supramolecular complexes, up to the complete modelling of pigment organelles. We also discuss the main limitations of quantum chemistry, emphasizing the need for carrying experimental work with identical vigor. We finally suggest that taking into account the ecology of pigments (i.e. how they interact with these various other cellular components and at higher organizational levels) will lead to a greater understanding of how and why animals are vividly and variably colored, two fundamental questions in organismal biology.
Collapse
Affiliation(s)
- Florent Figon
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, 37200 Tours, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, 37200 Tours, France
| |
Collapse
|
9
|
Dontsov AE, Sakina NL, Yakovleva MA, Bastrakov AI, Bastrakova IG, Zagorinsky AA, Ushakova NA, Feldman TB, Ostrovsky MA. Ommochromes from the Compound Eyes of Insects: Physicochemical Properties and Antioxidant Activity. BIOCHEMISTRY (MOSCOW) 2021; 85:668-678. [PMID: 32586230 DOI: 10.1134/s0006297920060048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The objective of this study was screening of ommochromes from the compound eyes of insects and comparison of their antioxidant properties. Ommochromes were isolated in preparative quantities from insects of five different families: Stratiomyidae, Sphingidae, Blaberidae, Acrididae, and Tenebrionidae. The yield of ommochromes (dry pigment weight) was 0.9-5.4% of tissue wet weight depending on the insect species. Isolated pigments were analyzed by high-performance liquid chromatography and represented a mixture of several ommochromes of the ommatin series. The isolated ommochromes displayed a pronounced fluorescence with the emission maxima at 435-450 nm and 520-535 nm; furthermore, the emission intensity increased significantly upon ommochrome oxidation with hydrogen peroxide. The ommochromes produced a stable EPR signal consisting of a singlet line with g = 2.0045-2.0048, width of 1.20-1.27 mT, and high concentration of paramagnetic centers (> 1017 spin/g dry weight). All the investigated ommochromes demonstrated high antiradical activity measured from the degree of chemiluminescence quenching in a model system containing luminol, hemoglobin, and hydrogen peroxide. The ommochromes strongly inhibited peroxidation of the photoreceptor cell outer segments induced by visible light in the presence of lipofuscin granules from the human retinal pigment epithelium, as well as suppressed iron/ascorbate-mediated lipid peroxidation. The obtained results are important for understanding the biological functions of ommochromes in invertebrates and identifying invertebrate species that could be used as efficient sources of ommochromes for pharmacological preparations to prevent and treat pathologies associated with the oxidative stress development.
Collapse
Affiliation(s)
- A E Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - N L Sakina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - M A Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - A I Bastrakov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia
| | - I G Bastrakova
- All-Russian Research Institute of Silviculture and Mechanization of Forestry, Pushkino, Moscow Region, 141200, Russia
| | - A A Zagorinsky
- Russian Forest Protection Center, Pushkino, Moscow Region, 141202, Russia
| | - N A Ushakova
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia
| | - T B Feldman
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - M A Ostrovsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia. .,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| |
Collapse
|
10
|
Chan-Higuera JE, Ezquerra-Brauer JM, Lipan L, Cano-Lamadrid M, Rizzitano R, Carbonell-Barrachina AA. Evaluation of Dosidicus gigas Skin Extract as An Antioxidant and Preservative in Tuna Pâté. Foods 2019; 8:foods8120693. [PMID: 31861248 PMCID: PMC6963961 DOI: 10.3390/foods8120693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 11/16/2022] Open
Abstract
A strategy for food preservation, based on a methanol–HCl squid skin extract (Dosidicus gigas) (JSSE), was evaluated at two concentrations in yellowfin tuna fish pâtés, which were stored at 4 and 8 °C for 20 day. The JSSE was characterized by determining its antioxidant and mutagenic activities. A yellowfin tuna pâté was elaborated, with and without the addition of the JSSE. An affective sensory analysis was performed to establish consumers’ preferences. During a 20-day storage period, the water activity (aw), pH, color difference (ΔE*ab), microbiological analysis, lipid oxidation and sensory quality attributes were evaluated, and the results were compared with the results of the butylated hydroxyanisole (BHA) and control treatments. The JSSE showed antioxidant activity against the 2,2-diphenyl-1-picrylhydrazyl (DPPH●+) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS●) radicals and did not induce mutation, according to the Ames’ Salmonella test, nor chromosomal abnormalities, according to the onion root-tip cell assay. The consumer analysis demonstrated a higher preference for the pâté with the added JSSE in seven out of the eight evaluated attributes. During storage, the JSSE neither had an impact on aw nor pH, maintained lower ΔE*ab values, inhibited the microbial activity and lipid oxidation (unlike the control pâté), and preserved the sensory quality attributes, unlike the BHA and control treatments. This study showed that the JSSE has biologically active pigments that can act as antioxidants and antimicrobials in yellowfin tuna fish pâtés.
Collapse
Affiliation(s)
- Jesús Enrique Chan-Higuera
- Grupo Calidad y Seguridad Alimentaria, CSA, Departamento de Tecnología Agroalimentaria, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández de Elche (UMH), Carretera de Beniel, km 3.2, 03312 Orihuela, Alicante, Spain; (J.E.C.-H.); (L.L.); (M.C.-L.); (R.R.)
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd, Luis Encinas y Rosales s/n, Col. Centro, C.P. 83000 Hermosillo, Sonora, Mexico
| | - Josafat Marina Ezquerra-Brauer
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd, Luis Encinas y Rosales s/n, Col. Centro, C.P. 83000 Hermosillo, Sonora, Mexico
- Correspondence: (J.M.E.-B.); (A.A.C.-B.)
| | - Leontina Lipan
- Grupo Calidad y Seguridad Alimentaria, CSA, Departamento de Tecnología Agroalimentaria, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández de Elche (UMH), Carretera de Beniel, km 3.2, 03312 Orihuela, Alicante, Spain; (J.E.C.-H.); (L.L.); (M.C.-L.); (R.R.)
| | - Marina Cano-Lamadrid
- Grupo Calidad y Seguridad Alimentaria, CSA, Departamento de Tecnología Agroalimentaria, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández de Elche (UMH), Carretera de Beniel, km 3.2, 03312 Orihuela, Alicante, Spain; (J.E.C.-H.); (L.L.); (M.C.-L.); (R.R.)
| | - Roberta Rizzitano
- Grupo Calidad y Seguridad Alimentaria, CSA, Departamento de Tecnología Agroalimentaria, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández de Elche (UMH), Carretera de Beniel, km 3.2, 03312 Orihuela, Alicante, Spain; (J.E.C.-H.); (L.L.); (M.C.-L.); (R.R.)
| | - Angel Antonio Carbonell-Barrachina
- Grupo Calidad y Seguridad Alimentaria, CSA, Departamento de Tecnología Agroalimentaria, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández de Elche (UMH), Carretera de Beniel, km 3.2, 03312 Orihuela, Alicante, Spain; (J.E.C.-H.); (L.L.); (M.C.-L.); (R.R.)
- Correspondence: (J.M.E.-B.); (A.A.C.-B.)
| |
Collapse
|
11
|
Xanthommatin is Behind the Antioxidant Activity of the Skin of Dosidicus gigas. Molecules 2019; 24:molecules24193420. [PMID: 31547094 PMCID: PMC6811751 DOI: 10.3390/molecules24193420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Marine bioactive compounds have been found in very different sources and exert a very vast array of activities. Squid skin, normally considered a discard, is a source of bioactive compounds such as pigments. Recovering these compounds is a potential means of valorizing seafood byproducts. Until now, the structure and molecular properties of the bioactive pigments in jumbo squid skin (JSS) have not been established. In this study, methanol-HCl (1%) pigment extracts from JSS were fractionated by open column chromatography and grouped by thin-layer chromatography in order to isolate antioxidant pigments. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH●) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS●+) radical scavenging assays and ferric reducing power (FRAP) assay. Fractions 11-34 were separated and grouped according to flow rate values (F1-F8). Fractions F1, F3, and F7 had the lowest IC50 against ABTS●+ per milligram, and fractions F3 and F7 showed the lowest IC50 in the FRAP assay. Finally, fraction F7 had the highest DPPH● scavenging activity. The chemical structure of the F7 fraction was characterized by infrared spectroscopy, 1H nuclear magnetic resonance, and electrospray ionization-mass spectrometry. One of the compounds identified in the fraction was xanthommatin (11-(3-amino-3-carboxypropanoyl)-1-hydroxy-5-oxo-5H-pyrido[3,2-a]phenoxazine-3-carboxylic acid) and their derivatives (hydro- and dihydroxanthommatin). The results show that JSS pigments contain ommochrome molecules like xanthommatin, to which the antioxidant activity can be attributed.
Collapse
|
12
|
Ushakova N, Dontsov A, Sakina N, Bastrakov A, Ostrovsky M. Antioxidative Properties of Melanins and Ommochromes from Black Soldier Fly Hermetia illucens. Biomolecules 2019; 9:E408. [PMID: 31450873 PMCID: PMC6770681 DOI: 10.3390/biom9090408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022] Open
Abstract
A comparative study of melanin and ommochrome-containing samples, isolated from the black soldier fly (BSF) by enzymatic hydrolysis, alkaline and acid alcohol extraction or by acid hydrolysis, was carried out. Melanin was isolated both as a melanin-chitin complex and as a water-soluble melanin. Acid hydrolysis followed by delipidization yielded a more concentrated melanin sample, the electron spin resonance (ESR) signal of which was 2.6 × 1018 spin/g. The ommochromes were extracted from the BSF eyes with acid methanol. The antiradical activity of BSF melanins and ommochromes was determined by the method of quenching of luminol chemiluminescence. It has been shown that delipidization of water-soluble melanin increases its antioxidant properties. A comparison of the antioxidant activity of BSF melanins and ommochromes in relation to photoinduced lipid peroxidation was carried out. The ESR characteristics of native and oxidized melanins and ommochromes were studied. It is assumed that H. illucens adult flies can be a useful source of natural pigments with antioxidant properties.
Collapse
Affiliation(s)
- Nina Ushakova
- A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, 119071 Moscow, Russia.
| | - Alexander Dontsov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Natalia Sakina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexander Bastrakov
- A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, 119071 Moscow, Russia
| | - Mikhail Ostrovsky
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
13
|
Augustine C. Unravelling the Competence of Leucocyanidin in Free Radical Scavenging: A Theoretical Approach Based on Electronic Structure Calculations. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619020045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Figon F, Casas J. Ommochromes in invertebrates: biochemistry and cell biology. Biol Rev Camb Philos Soc 2019; 94:156-183. [PMID: 29989284 DOI: 10.1111/brv.12441] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023]
Abstract
Ommochromes are widely occurring coloured molecules of invertebrates, arising from tryptophan catabolism through the so-called Tryptophan → Ommochrome pathway. They are mainly known to mediate compound eye vision, as well as reversible and irreversible colour patterning. Ommochromes might also be involved in cell homeostasis by detoxifying free tryptophan and buffering oxidative stress. These biological functions are directly linked to their unique chromophore, the phenoxazine/phenothiazine system. The most recent reviews on ommochrome biochemistry were published more than 30 years ago, since when new results on the enzymes of the ommochrome pathway, on ommochrome photochemistry as well as on their antiradical capacities have been obtained. Ommochromasomes are the organelles where ommochromes are synthesised and stored. Hence, they play an important role in mediating ommochrome functions. Ommochromasomes are part of the lysosome-related organelles (LROs) family, which includes other pigmented organelles such as vertebrate melanosomes. Ommochromasomes are unique because they are the only LRO for which a recycling process during reversible colour change has been described. Herein, we provide an update on ommochrome biochemistry, photoreactivity and antiradical capacities to explain their diversity and behaviour both in vivo and in vitro. We also highlight new biochemical techniques, such as quantum chemistry, metabolomics and crystallography, which could lead to major advances in their chemical and functional characterisation. We then focus on ommochromasome structure and formation by drawing parallels with the well-characterised melanosomes of vertebrates. The biochemical, genetic, cellular and microscopic tools that have been applied to melanosomes should provide important information on the ommochromasome life cycle. We propose LRO-based models for ommochromasome biogenesis and recycling that could be tested in the future. Using the context of insect compound eyes, we finally emphasise the importance of an integrated approach in understanding the biological functions of ommochromes.
Collapse
Affiliation(s)
- Florent Figon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200 Tours, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200 Tours, France
| |
Collapse
|
15
|
Martínez‐Lendech N, Golab MJ, Osorio‐Beristain M, Contreras‐Garduño J. Sexual signals reveal males’ oxidative stress defences: Testing this hypothesis in an invertebrate. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Norma Martínez‐Lendech
- Centro de Investigación en Biodiversidad y ConservaciónUniversidad Autónoma del Estado de Morelos Cuernavaca Mexico
| | - Maria J. Golab
- Institute of Nature ConservationPolish Academy of Sciences Krakow Poland
| | - Marcela Osorio‐Beristain
- Centro de Investigación en Biodiversidad y ConservaciónUniversidad Autónoma del Estado de Morelos Cuernavaca Mexico
| | | |
Collapse
|
16
|
Ezquerra-Brauer JM, Miranda JM, Chan-Higuera JE, Barros-Velázquez J, Aubourg SP. New icing media for quality enhancement of chilled hake (Merluccius merluccius) using a jumbo squid (Dosidicus gigas) skin extract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3412-3419. [PMID: 28009054 DOI: 10.1002/jsfa.8192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND An advanced strategy for chilled fish preservation, based on the inclusion in ice of an extract of jumbo squid (Dosidicus gigas) skin (JSS), is proposed. Aqueous solutions including acetic acid-ethanol extracts of JSS were tested at two different concentrations as icing media, with the effects on the quality evolution of chilled hake (Merluccius merluccius) being monitored. RESULTS A significant inhibition (P < 0.05) of microbial activity (aerobes, psychrotrophs, Enterobacteriaceae, proteolytic bacteria; pH, trimethylamine) was obtained in hake corresponding to the icing batch including the highest JSS concentration. Additionally, fish specimens from such icing conditions showed an inhibitory effect (P < 0.05) on lipid hydrolysis development, while no effect (P > 0.05) was depicted for lipid oxidation. Sensory analysis (skin and mucus development; eyes; gills; texture; external odour; raw and cooked flesh odour; flesh taste) indicated a shelf life extension of chilled hake stored in ice including the highest JSS concentration. CONCLUSION A profitable use of JSS, an industrial by-product during jumbo squid commercialisation, has been developed in the present work, which leads to a remarkable microbial inhibition and a significant shelf life extension of chilled hake. In agreement with previous research, ommochrome pigments (i.e. lipophilic-type compounds) would be considered responsible for this preservative effect. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - José M Miranda
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| | | | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| | - Santiago P Aubourg
- Department of Food Technology, Marine Research Institute (CSIC), Vigo, Spain
| |
Collapse
|
17
|
Effect of jumbo squid (Dosidicus gigas) skin extract on the microbial activity in chilled mackerel (Scomber scombrus). Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Stubenhaus BM, Dustin JP, Neverett ER, Beaudry MS, Nadeau LE, Burk-McCoy E, He X, Pearson BJ, Pellettieri J. Light-induced depigmentation in planarians models the pathophysiology of acute porphyrias. eLife 2016; 5. [PMID: 27240733 PMCID: PMC4887210 DOI: 10.7554/elife.14175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/25/2016] [Indexed: 12/12/2022] Open
Abstract
Porphyrias are disorders of heme metabolism frequently characterized by extreme photosensitivity. This symptom results from accumulation of porphyrins, tetrapyrrole intermediates in heme biosynthesis that generate reactive oxygen species when exposed to light, in the skin of affected individuals. Here we report that in addition to producing an ommochrome body pigment, the planarian flatworm Schmidtea mediterranea generates porphyrins in its subepithelial pigment cells under physiological conditions, and that this leads to pigment cell loss when animals are exposed to intense visible light. Remarkably, porphyrin biosynthesis and light-induced depigmentation are enhanced by starvation, recapitulating a common feature of some porphyrias – decreased nutrient intake precipitates an acute manifestation of the disease. Our results establish planarians as an experimentally tractable animal model for research into the pathophysiology of acute porphyrias, and potentially for the identification of novel pharmacological interventions capable of alleviating porphyrin-mediated photosensitivity or decoupling dieting and fasting from disease pathogenesis. DOI:http://dx.doi.org/10.7554/eLife.14175.001 Porphyrias are rare diseases that involve ring-shaped molecules called porphyrins accumulating in various parts of the body. Porphyrins are produced as part of the normal process that makes an important molecule called heme, which is required to transport oxygen. However, high levels of porphyrins can be toxic. For example, porphyrins deposited in the skin can cause swelling and blistering when the skin is exposed to bright light. Other disease symptoms include neurological issues ranging from anxiety and confusion to seizures or paralysis. It has been speculated that porphyrias may have affected several historical figures, including the artist Vincent van Gogh. In addition to their role in heme production, porphyrins also have other roles. For example, they are used as pigments in the wing feathers of some owls. Researchers are trying to understand more about how organisms regulate porphyrin production so that it might be possible to develop more effective treatments for porphyria in humans. Here, Stubenhaus et al. studied how a flatworm called Schmidtea mediterranea makes porphyrins. A group of undergraduate students noticed that these animals – which are normally brown in color – turned white when they were exposed to sunlight for several days. Stubenhaus et al. found that S. mediterranea makes porphyrins in the pigment cells of its skin using the same genes that make porphyrins in humans. Together with other molecules called ommochromes, the porphyrins give rise to the normal color of this flatworm. However, when the animals are exposed to intense light for extended periods of time, which is unlikely to occur in the wild, porphyrin production leads to loss of the pigment cells. The experiments also show that starvation increases the rate of pigment cell loss in light-exposed flatworms, which mirrors the worsening of disease symptoms some porphyria patients experience when they diet or fast. Stubenhaus et al. propose that flatworms are useful models in which to study the molecular processes that are responsible for porphyrias in humans. Further research is required to determine the exact chemical structure of the porphyrin and ommochrome molecules produced in different flatworm species. Stubenhaus et al. also plan to use flatworms to screen for drugs that could potentially be developed into new treatments for porphyria. DOI:http://dx.doi.org/10.7554/eLife.14175.002
Collapse
Affiliation(s)
| | - John P Dustin
- Department of Biology, Keene State College, Keene, United States
| | - Emily R Neverett
- Department of Biology, Keene State College, Keene, United States
| | - Megan S Beaudry
- Department of Biology, Keene State College, Keene, United States
| | - Leanna E Nadeau
- Department of Biology, Keene State College, Keene, United States
| | - Ethan Burk-McCoy
- Department of Biology, Keene State College, Keene, United States
| | - Xinwen He
- The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Bret J Pearson
- The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Ontario Institute for Cancer Research, Toronto, Canada
| | | |
Collapse
|
19
|
Aubourg SP, Torres‐Arreola W, Trigo M, Ezquerra‐Brauer JM. Partial characterization of jumbo squid skin pigment extract and its antioxidant potential in a marine oil system. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201500356] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Santiago P. Aubourg
- Department of Food Science and TechnologyInstituto de Investigaciones Marinas de Vigo (CSIC)VigoSpain
| | - Wilfrido Torres‐Arreola
- Departamento de Investigación y Posgrado en AlimentosUniversidad de SonoraHermosilloSonoraMexico
| | - Marcos Trigo
- Department of Food Science and TechnologyInstituto de Investigaciones Marinas de Vigo (CSIC)VigoSpain
| | | |
Collapse
|