1
|
Heinemann U, Roske Y. Cold-Shock Domains-Abundance, Structure, Properties, and Nucleic-Acid Binding. Cancers (Basel) 2021; 13:cancers13020190. [PMID: 33430354 PMCID: PMC7825780 DOI: 10.3390/cancers13020190] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Proteins are composed of compact domains, often of known three-dimensional structure, and natively unstructured polypeptide regions. The abundant cold-shock domain is among the set of canonical nucleic acid-binding domains and conserved from bacteria to man. Proteins containing cold-shock domains serve a large variety of biological functions, which are mostly linked to DNA or RNA binding. These functions include the regulation of transcription, RNA splicing, translation, stability and sequestration. Cold-shock domains have a simple architecture with a conserved surface ideally suited to bind single-stranded nucleic acids. Because the binding is mostly by non-specific molecular interactions which do not involve the sugar-phosphate backbone, cold-shock domains are not strictly sequence-specific and do not discriminate reliably between DNA and RNA. Many, but not all functions of cold shock-domain proteins in health and disease can be understood based of the physical and structural properties of their cold-shock domains. Abstract The cold-shock domain has a deceptively simple architecture but supports a complex biology. It is conserved from bacteria to man and has representatives in all kingdoms of life. Bacterial cold-shock proteins consist of a single cold-shock domain and some, but not all are induced by cold shock. Cold-shock domains in human proteins are often associated with natively unfolded protein segments and more rarely with other folded domains. Cold-shock proteins and domains share a five-stranded all-antiparallel β-barrel structure and a conserved surface that binds single-stranded nucleic acids, predominantly by stacking interactions between nucleobases and aromatic protein sidechains. This conserved binding mode explains the cold-shock domains’ ability to associate with both DNA and RNA strands and their limited sequence selectivity. The promiscuous DNA and RNA binding provides a rationale for the ability of cold-shock domain-containing proteins to function in transcription regulation and DNA-damage repair as well as in regulating splicing, translation, mRNA stability and RNA sequestration.
Collapse
|
2
|
Martins de Oliveira V, Godoi Contessoto VD, Bruno da Silva F, Zago Caetano DL, Jurado de Carvalho S, Pereira Leite VB. Effects of pH and Salt Concentration on Stability of a Protein G Variant Using Coarse-Grained Models. Biophys J 2018; 114:65-75. [PMID: 29320697 PMCID: PMC5984902 DOI: 10.1016/j.bpj.2017.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/20/2017] [Accepted: 11/13/2017] [Indexed: 11/18/2022] Open
Abstract
The importance of charge-charge interactions in the thermal stability of proteins is widely known. pH and ionic strength play a crucial role in these electrostatic interactions, as well as in the arrangement of ionizable residues in each protein-folding stage. In this study, two coarse-grained models were used to evaluate the effect of pH and salt concentration on the thermal stability of a protein G variant (1PGB-QDD), which was chosen due to the quantity of experimental data exploring these effects on its stability. One of these coarse-grained models, the TKSA, calculates the electrostatic free energy of the protein in the native state via the Tanford-Kirkwood approach for each residue. The other one, CpHMD-SBM, uses a Coulomb screening potential in addition to the structure-based model Cα. Both models simulate the system in constant pH. The comparison between the experimental stability analysis and the computational results obtained by these simple models showed a good agreement. Through the TKSA method, the role of each charged residue in the protein's thermal stability was inferred. Using CpHMD-SBM, it was possible to evaluate salt and pH effects throughout the folding process. Finally, the computational pKa values were calculated by both methods and presented a good level of agreement with the experiments. This study provides, to our knowledge, new information and a comprehensive description of the electrostatic contribution to protein G stability.
Collapse
Affiliation(s)
- Vinícius Martins de Oliveira
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, Brazil
| | - Vinícius de Godoi Contessoto
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, Brazil; Brazilian Bioethanol Science and Technology Laboratory- (CTBE), Campinas, Brazil
| | - Fernando Bruno da Silva
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, Brazil
| | - Daniel Lucas Zago Caetano
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, Brazil
| | - Sidney Jurado de Carvalho
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, Brazil
| | - Vitor Barbanti Pereira Leite
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, Brazil.
| |
Collapse
|
3
|
Han Y, Yu R, Gao P, Lu X, Yu W. The hydrogen-bond network around Glu160 contributes to the structural stability of chitosanase CsnA from Renibacterium sp. QD1. Int J Biol Macromol 2017; 109:880-887. [PMID: 29155203 DOI: 10.1016/j.ijbiomac.2017.11.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022]
Abstract
CsnA, a chitosanase from Renibacterium sp. QD1, has great potential for industrial applications due to its high yield and broad pH stability. In this study, a specific Glu160 in CsnA was identified by sequence alignment, and structural analysis and MD simulation predicted that Glu160 formed a hydrogen-bond network with Lys163 and Thr114. To evaluate the effect of the network, we constructed four mutants, including E160A, E160Q, K163A, and T114A, which partially or completely destroy this network. Characterization of these mutants demonstrated that the disruption of the network significantly decreased the enzyme thermostability. The underlying mechanisms responsible for the change of thermostability analyzed by circular dichroism spectroscopy revealed that the hydrogen-bond network conferred the structural stability of CsnA. Moreover, the length of the side chain of residue at 160 impacted conformational stability of the enzyme. Taken together, the hydrogen-bond network around Glu160 plays important roles in stabilization of CsnA.
Collapse
Affiliation(s)
- Yujuan Han
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Rilei Yu
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Peixin Gao
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xinzhi Lu
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Wengong Yu
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| |
Collapse
|