1
|
Castellanos MM, Gressard H, Li X, Magagnoli C, Moriconi A, Stranges D, Strodiot L, Tello Soto M, Zwierzyna M, Campa C. CMC Strategies and Advanced Technologies for Vaccine Development to Boost Acceleration and Pandemic Preparedness. Vaccines (Basel) 2023; 11:1153. [PMID: 37514969 PMCID: PMC10386492 DOI: 10.3390/vaccines11071153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
This review reports on an overview of key enablers of acceleration/pandemic and preparedness, covering CMC strategies as well as technical innovations in vaccine development. Considerations are shared on implementation hurdles and opportunities to drive sustained acceleration for vaccine development and considers learnings from the COVID pandemic and direct experience in addressing unmet medical needs. These reflections focus on (i) the importance of a cross-disciplinary framework of technical expectations ranging from target antigen identification to launch and life-cycle management; (ii) the use of prior platform knowledge across similar or products/vaccine types; (iii) the implementation of innovation and digital tools for fast development and innovative control strategies.
Collapse
Affiliation(s)
- Maria Monica Castellanos
- Drug Product Development, Vaccines Technical R&D, GSK, 14200 Shady Grove Road, Rockville, MD 20850, USA
| | - Hervé Gressard
- Project & Digital Sciences, Vaccines Technical R&D, GSK, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - Xiangming Li
- Drug Substance Development, Vaccines Technical R&D, GSK, 14200 Shady Grove Road, Rockville, MD 20850, USA
| | - Claudia Magagnoli
- Analytical Research & Development, Vaccines Technical R&D, GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Alessio Moriconi
- Drug Product Development, Vaccines Technical R&D, GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Daniela Stranges
- Drug Product Development, Vaccines Technical R&D, GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Laurent Strodiot
- Drug Product Development, Vaccines Technical R&D, GSK, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - Monica Tello Soto
- Drug Substance Development, Vaccines Technical R&D, GSK, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - Magdalena Zwierzyna
- Project & Digital Sciences, Vaccines Technical R&D, GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Cristiana Campa
- Vaccines Global Technical R&D, GSK, Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
2
|
Exploring the effect of aplidin on low molecular weight protein tyrosine phosphatase by molecular docking and molecular dynamic simulation study. Comput Biol Chem 2019; 83:107123. [PMID: 31561070 DOI: 10.1016/j.compbiolchem.2019.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/26/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022]
Abstract
The low molecular weight protein tyrosine phosphatase (LMW-PTP) could regulate many signaling pathways, and it had drawn attention as a potential target for cancer. As previous report has indicated that the aplidin could inhibit the LMW-PTP, and thus, the relevant cancer caused by the abnormal regulation of the LMW-PTP could be remission. However, the molecular mechanism of inhibition of the LMW-PTP by the aplidin had not been fully understood. In this study, various computational approaches, namely molecular docking, MDs and post-dynamic analyses were utilized to explore the effect of the aplidin on the LMW-PTP. The results suggested that the intramolecular interactions of the residues in the two sides of the active site (Ser43-Ala55 and Pro121-Asn134) and the P-loop region (Leu13-Ser19) in the LMW-PTP was disturbed owing to the aplidin, meanwhile, the π-π interaction between Tyr131 and Tyr132 might be broken. The Asn15 might be the key residue to break the residues interactions. In a word, this study may provide more information for understanding the effect of inhibition of the aplidin on the LMW-PTP.
Collapse
|
3
|
Sun YZ, Chen XB, Wang RR, Li WY, Ma Y. Exploring the effect of N308D mutation on protein tyrosine phosphatase-2 cause gain-of-function activity by a molecular dynamics study. J Cell Biochem 2018; 120:5949-5961. [PMID: 30304563 DOI: 10.1002/jcb.27883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/19/2018] [Indexed: 01/27/2023]
Abstract
One of the most common protein tyrosine phosphatase-2 (SHP2) mutations in Noonan syndrome is the N308D mutation, and it increases the activity of the protein. However, the molecular basis of the activation of N308D mutation on SHP2 conformations is poorly understood. Here, molecular dynamic simulations were performed on SHP2 and SHP2-N308D to explore the effect of N308D mutation on SHP2 cause gain of function activity, respectively. The principal component analysis, dynamic cross-correlation map, secondary structure analysis, residue interaction networks, and solvent accessible surface area analysis suggested that the N308D mutation distorted the residues interactions network between the allosteric site (residue Gly244-Gly246) and C-SH2 domain, including the hydrogen bond formation and the binding energy. Meanwhile, the activity of catalytic site (residue Gly503-Val505) located in the Q-loop in mutant increased due to this region's high fluctuations. Therefore, the substrate had more chances to access to the catalytic activity site of the precision time protocol domain of SHP2-N308D, which was easy to be exposed. In addition, we had speculated that the Lys244 located in the allosteric site was the key residue which lead to the protein conformation changes. Consequently, overall calculations presented in this study ultimately provide a useful understanding of the increased activity of SHP2 caused by the N308D mutation.
Collapse
Affiliation(s)
- Ying-Zhan Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiu-Bo Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China.,Eye Hospital, Tianjin Medical University, School of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Rui-Rui Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wei-Ya Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Li HL, Ma Y, Zheng CJ, Jin WY, Liu WS, Wang RL. Exploring the effect of D61G mutation on SHP2 cause gain of function activity by a molecular dynamics study. J Biomol Struct Dyn 2017; 36:3856-3868. [PMID: 29125030 DOI: 10.1080/07391102.2017.1402709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Noonan syndrome (NS) is a common autosomal dominant congenital disorder which could cause the congenital cardiopathy and cancer predisposition. Previous studies reported that the knock-in mouse models of the mutant D61G of SHP2 exhibited the major features of NS, which demonstrated that the mutation D61G of SHP2 could cause NS. To explore the effect of D61G mutation on SHP2 and explain the high activity of the mutant, molecular dynamic simulations were performed on wild type (WT) of SHP2 and the mutated SHP2-D61G, respectively. The principal component analysis and dynamic cross-correlation mapping, associated with secondary structure, showed that the D61G mutation affected the motions of two regions (residues Asn 58-Thr 59 and Val 460-His 462) in SHP2 from β to turn. Moreover, the residue interaction networks analysis, the hydrogen bond occupancy analysis and the binding free energies were calculated to gain detailed insight into the influence of the mutant D61G on the two regions, revealing that the major differences between SHP2-WT and SHP2-D61G were the different interactions between Gly 61 and Gly 462, Gly 61 and Ala 461, Gln 506 and Ile 463, Gly 61 and Asn 58, Ile 463 and Thr 466, Gly 462 and Cys 459. Consequently, our findings here may provide knowledge to understand the increased activity of SHP2 caused by the mutant D61G.
Collapse
Key Words
- CHD, congenital heart defects
- D61G
- DCCM, dynamic cross-correlation mapping
- DSPP, Definition of Secondary Structure of Proteins
- H bond, hydrogen bond
- MD, molecular dynamic
- MM-PBSA, molecular mechanics Poisson Boltzmann surface area
- NS, Noonan syndrome
- PCA, principal component analysis
- PTPN11, tyrosine protein phosphatase non-receptor type 11
- RINs, residue interaction networks
- RMSD, root-mean-square deviation
- RMSF, root-mean-square fluctuation
- SH2, Src-homology 2
- SHP2
- SHP2, protein tyrosine phosphatase-2
- SPC, single-point charge
- VDW, Van der Waals
- WT, wild type
- molecular dynamic simulation
Collapse
Affiliation(s)
- Hong-Lian Li
- a Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy , Tianjin Medical University , Tianjin , China
| | - Ying Ma
- a Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy , Tianjin Medical University , Tianjin , China
| | - Chang-Jie Zheng
- a Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy , Tianjin Medical University , Tianjin , China
| | - Wen-Yan Jin
- a Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy , Tianjin Medical University , Tianjin , China
| | - Wen-Shan Liu
- a Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy , Tianjin Medical University , Tianjin , China
| | - Run-Ling Wang
- a Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy , Tianjin Medical University , Tianjin , China
| |
Collapse
|
5
|
Periole X. Interplay of G Protein-Coupled Receptors with the Membrane: Insights from Supra-Atomic Coarse Grain Molecular Dynamics Simulations. Chem Rev 2016; 117:156-185. [PMID: 28073248 DOI: 10.1021/acs.chemrev.6b00344] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
G protein-coupled receptors (GPCRs) are central to many fundamental cellular signaling pathways. They transduce signals from the outside to the inside of cells in physiological processes ranging from vision to immune response. It is extremely challenging to look at them individually using conventional experimental techniques. Recently, a pseudo atomistic molecular model has emerged as a valuable tool to access information on GPCRs, more specifically on their interactions with their environment in their native cell membrane and the consequences on their supramolecular organization. This approach uses the Martini coarse grain (CG) model to describe the receptors, lipids, and solvent in molecular dynamics (MD) simulations and in enough detail to allow conserving the chemical specificity of the different molecules. The elimination of unnecessary degrees of freedom has opened up large-scale simulations of the lipid-mediated supramolecular organization of GPCRs. Here, after introducing the Martini CGMD method, we review these studies carried out on various members of the GPCR family, including rhodopsin (visual receptor), opioid receptors, adrenergic receptors, adenosine receptors, dopamine receptor, and sphingosine 1-phosphate receptor. These studies have brought to light an interesting set of novel biophysical principles. The insights range from revealing localized and heterogeneous deformations of the membrane bilayer at the surface of the protein, specific interactions of lipid molecules with individual GPCRs, to the effect of the membrane matrix on global GPCR self-assembly. The review ends with an overview of the lessons learned from the use of the CGMD method, the biophysical-chemical findings on lipid-protein interplay.
Collapse
Affiliation(s)
- Xavier Periole
- Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|