1
|
Li R, Zhu B, Hu XP, Shi XY, Qi LL, Liang P, Gao XW. Overexpression of PxαE14 Contributing to Detoxification of Multiple Insecticides in Plutella xylostella (L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5794-5804. [PMID: 35510781 DOI: 10.1021/acs.jafc.2c01867] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The diamondback moth, Plutella xylostella (L.), has evolved with varying degrees of resistance to almost all major classes of insecticides and has become the most resistant pest worldwide. The multiresistance to different types of insecticides has been frequently reported in P. xylostella, but little is known about the mechanism. In this study, a carboxylesterase (CarE) gene, PxαE14, was found significantly overexpressed in a field-evolved multiresistant P. xylostella population and can be dramatically induced by eight of nine tested insecticides. Results of the real-time quantitative polymerase chain reaction (RT-qPCR) showed that PxαE14 was predominantly expressed in the midgut and malpighian tubule of larvae. Knockdown of PxαE14 dramatically increased the susceptibility of the larvae to β-cypermethrin, bifenthrin, chlorpyrifos, fenvalerate, malathion, and phoxim, while overexpression of PxαE14 in Drosophila melanogaster increased the tolerance of the fruit flies to these insecticides obviously. More importantly, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay showed that the recombinant PxαE14 expressed in Escherichia coli exhibited metabolic activity against the six insecticides. The homology modeling, molecular docking, and molecular dynamics simulation analyses showed that these six insecticides could stably bind to PxαE14. Taken together, these results demonstrate that constitutive and inductive overexpression of PxαE14 contributes to detoxification of multiple insecticides involved in multiresistance in P. xylostella. Our findings provide evidence for understanding the molecular mechanisms underlying the multiresistance in insect pests.
Collapse
Affiliation(s)
- Ran Li
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Bin Zhu
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xue-Ping Hu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xue-Yan Shi
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Lin-Lu Qi
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Pei Liang
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xi-Wu Gao
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
2
|
Adinortey CA, Kwarko GB, Koranteng R, Boison D, Obuaba I, Wilson MD, Kwofie SK. Molecular Structure-Based Screening of the Constituents of Calotropis procera Identifies Potential Inhibitors of Diabetes Mellitus Target Alpha Glucosidase. Curr Issues Mol Biol 2022; 44:963-987. [PMID: 35723349 PMCID: PMC8928985 DOI: 10.3390/cimb44020064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus is a disorder characterized by higher levels of blood glucose due to impaired insulin mechanisms. Alpha glucosidase is a critical drug target implicated in the mechanisms of diabetes mellitus and its inhibition controls hyperglycemia. Since the existing standard synthetic drugs have therapeutic limitations, it is imperative to identify new potent inhibitors of natural product origin which may slow carbohydrate digestion and absorption via alpha glucosidase. Since plant extracts from Calotropis procera have been extensively used in the treatment of diabetes mellitus, the present study used molecular docking and dynamics simulation techniques to screen its constituents against the receptor alpha glucosidase. Taraxasterol, syriogenin, isorhamnetin-3-O-robinobioside and calotoxin were identified as potential novel lead compounds with plausible binding energies of −40.2, −35.1, −34.3 and −34.3 kJ/mol against alpha glucosidase, respectively. The residues Trp481, Asp518, Leu677, Leu678 and Leu680 were identified as critical for binding and the compounds were predicted as alpha glucosidase inhibitors. Structurally similar compounds with Tanimoto coefficients greater than 0.7 were reported experimentally to be inhibitors of alpha glucosidase or antidiabetic. The structures of the molecules may serve as templates for the design of novel inhibitors and warrant in vitro assaying to corroborate their antidiabetic potential.
Collapse
Affiliation(s)
- Cynthia A. Adinortey
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast CC 033, Ghana;
| | - Gabriel B. Kwarko
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 54, Ghana;
| | - Russell Koranteng
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana;
| | - Daniel Boison
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast CC 033, Ghana; (D.B.); (I.O.)
| | - Issaka Obuaba
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast CC 033, Ghana; (D.B.); (I.O.)
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana;
| | - Samuel K. Kwofie
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 54, Ghana;
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana;
- Correspondence: ; Tel.: +233-203-797922
| |
Collapse
|
3
|
Guo L, Fan XY, Qiao X, Montell C, Huang J. An octopamine receptor confers selective toxicity of amitraz on honeybees and Varroa mites. eLife 2021; 10:68268. [PMID: 34263722 PMCID: PMC8313232 DOI: 10.7554/elife.68268] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/11/2021] [Indexed: 12/30/2022] Open
Abstract
The Varroa destructor mite is a devastating parasite of Apis mellifera honeybees. They can cause colonies to collapse by spreading viruses and feeding on the fat reserves of adults and larvae. Amitraz is used to control mites due to its low toxicity to bees; however, the mechanism of bee resistance to amitraz remains unknown. In this study, we found that amitraz and its major metabolite potently activated all four mite octopamine receptors. Behavioral assays using Drosophila null mutants of octopamine receptors identified one receptor subtype Octβ2R as the sole target of amitraz in vivo. We found that thermogenetic activation of octβ2R-expressing neurons mimics amitraz poisoning symptoms in target pests. We next confirmed that the mite Octβ2R was more sensitive to amitraz and its metabolite than the bee Octβ2R in pharmacological assays and transgenic flies. Furthermore, replacement of three bee-specific residues with the counterparts in the mite receptor increased amitraz sensitivity of the bee Octβ2R, indicating that the relative insensitivity of their receptor is the major mechanism for honeybees to resist amitraz. The present findings have important implications for resistance management and the design of safer insecticides that selectively target pests while maintaining low toxicity to non-target pollinators.
Collapse
Affiliation(s)
- Lei Guo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xin-Yu Fan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiaomu Qiao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Craig Montell
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Jia Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Hu X, Ma X, Cui J, Liu H, Zhu B, Xie J, Liang P, Zhang L. Identification of 1-phenyl-4-cyano-5-aminopyrazoles as novel ecdysone receptor ligands by virtual screening, structural optimization, and biological evaluations. Chem Biol Drug Des 2020; 97:184-195. [PMID: 32767850 DOI: 10.1111/cbdd.13772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/15/2020] [Accepted: 07/25/2020] [Indexed: 02/03/2023]
Abstract
Ecdysteroids initiate the molting process in insects by binding to the ecdysone receptor (EcR), which is a promising target for identifying insect growth regulators. This paper presents an in silico/in vitro screening procedure for identifying new EcR ligands. The three-step virtual screening procedure uses a three-dimensional pharmacophore model, docking and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) rescoring routine. A novel hit (VS14) with good binding activity against Plutella xylostella EcR was identified from a library of over 200,000 chemicals. Subsequently, the 1-phenyl-4-cyano-5-aminopyrazole scaffold and twelve EcR ligands were synthesized. Their IC50 values against Plutella xylostella EcR ranged from 0.64 to 23.21 μm. Furthermore, a preliminary analysis of the structure-activity relationship for novel scaffolds provided a basis for designing new ligands with improved activity.
Collapse
Affiliation(s)
- Xueping Hu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xiaojuan Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Jialin Cui
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Haishan Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jin Xie
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Li Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Chandra A, Gurjar V, Qamar I, Singh N. Identification of potential inhibitors of SARS-COV-2 endoribonuclease (EndoU) from FDA approved drugs: a drug repurposing approach to find therapeutics for COVID-19. J Biomol Struct Dyn 2020; 39:4201-4211. [PMID: 32462970 PMCID: PMC7298882 DOI: 10.1080/07391102.2020.1775127] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SARS-CoV-2 is causative agent of COVID-19, which is responsible for severe social and economic disruption globally. Lack of vaccine or antiviral drug with clinical efficacy suggested that drug repurposing approach may provide a quick therapeutic solution to COVID-19. Nonstructural protein-15 (NSP15) encodes for an uridylate-specific endoribonuclease (EndoU) enzyme, essential for virus life cycle and an attractive target for drug development. We have performed in silico based virtual screening of FDA approved compounds targeting EndoU in search of COVID-19 drugs from commercially available approved molecules. Two drugs Glisoxepide and Idarubicin used for treatment for diabetes and leukemia, respectively, were selected as stronger binder of EndoU. Both the drugs bound to the active site of the viral endonuclease by forming attractive intermolecular interactions with catalytically essential amino acid residues, His235, His250, and Lys290. Molecular dynamics simulation studies showed stable conformation dynamics upon drugs binding to endoU. The binding free energies for Glisoxepide and Idarubicin were calculated to be –141 ± 11 and –136 ± 16 kJ/mol, respectively. The IC50 were predicted to be 9.2 µM and 30 µM for Glisoxepide and Idarubicin, respectively. Comparative structural analysis showed the stronger binding of EndoU to Glisoxepide and Idarubicin than to uridine monophosphate (UMP). Surface area calculations showed buried are of 361.8Å2 by Glisoxepide which is almost double of the area occupied by UMP suggesting stronger binding of the drug than the ribonucleotide. However, further studies on these drugs for evaluation of their clinical efficacy and dose formulations may be required, which may provide a quick therapeutic option to treat COVID-19. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Anshuman Chandra
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Vaishali Gurjar
- Savitri Bai Phule Balika Inter College, Greater Noida, Uttar Pradesh, India
| | - Imteyaz Qamar
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Nagendra Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Laudadio E, Cedraro N, Mangiaterra G, Citterio B, Mobbili G, Minnelli C, Bizzaro D, Biavasco F, Galeazzi R. Natural Alkaloid Berberine Activity against Pseudomonas aeruginosa MexXY-Mediated Aminoglycoside Resistance: In Silico and in Vitro Studies. JOURNAL OF NATURAL PRODUCTS 2019; 82:1935-1944. [PMID: 31274312 DOI: 10.1021/acs.jnatprod.9b00317] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The multidrug efflux system MexXY-OprM, inside the resistance-nodulation-division family, is a major determinant of aminoglycoside resistance in Pseudomonas aeruginosa. In the fight aimed to identify potential efflux pump inhibitors among natural compounds, the alkaloid berberine emerged as a putative inhibitor of MexXY-OprM. In this work, we elucidated its interaction with the extrusor protein MexY and assessed its synergistic activity with aminoglycosides. In particular, we built an in silico model for the MexY protein in its trimeric association using both AcrB (E. coli) and MexB (P. aeruginosa) as 3D templates. This model has been stabilized in the bacterial cytoplasmic membrane using a molecular dynamics approach and used for ensemble docking to obtain the binding site mapping. Then, through dynamic docking, we assessed its binding affinity and its synergism with aminoglycosides focusing on tobramycin, which is widely used in the treatment of pulmonary infections. In vitro assays validated the data obtained: the results showed a 2-fold increase of the inhibitory activity and 2-4 log increase of the killing activity of the association berberine-tobramycin compared to those of tobramycin alone against 13/28 tested P. aeruginosa clinical isolates. From hemolytic assays, we preliminarily assessed berberine's low toxicity.
Collapse
Affiliation(s)
- Emiliano Laudadio
- Dipartimento S.I.M.A.U. , Università Politecnica delle Marche , Via Brecce Bianche , 60131 , Ancona , Italy
| | - Nicholas Cedraro
- Dipartimento di Scienze della Vita e dell'Ambiente , Università Politecnica delle Marche , Via Brecce Bianche , 60131 , Ancona , Italy
| | - Gianmarco Mangiaterra
- Dipartimento di Scienze della Vita e dell'Ambiente , Università Politecnica delle Marche , Via Brecce Bianche , 60131 , Ancona , Italy
| | - Barbara Citterio
- Dipartimento di Scienze Biomolecolari, sez. di Biotecnologie , Università degli Studi di Urbino "Carlo Bo" , 61029 , Urbino , Italy
| | - Giovanna Mobbili
- Dipartimento di Scienze della Vita e dell'Ambiente , Università Politecnica delle Marche , Via Brecce Bianche , 60131 , Ancona , Italy
| | - Cristina Minnelli
- Dipartimento di Scienze della Vita e dell'Ambiente , Università Politecnica delle Marche , Via Brecce Bianche , 60131 , Ancona , Italy
| | - Davide Bizzaro
- Dipartimento di Scienze della Vita e dell'Ambiente , Università Politecnica delle Marche , Via Brecce Bianche , 60131 , Ancona , Italy
| | - Francesca Biavasco
- Dipartimento di Scienze della Vita e dell'Ambiente , Università Politecnica delle Marche , Via Brecce Bianche , 60131 , Ancona , Italy
| | - Roberta Galeazzi
- Dipartimento di Scienze della Vita e dell'Ambiente , Università Politecnica delle Marche , Via Brecce Bianche , 60131 , Ancona , Italy
| |
Collapse
|
7
|
Hu X, Hu S, Wang J, Dong Y, Zhang L, Dong Y. Steered molecular dynamics for studying ligand unbinding of ecdysone receptor. J Biomol Struct Dyn 2017; 36:3819-3828. [DOI: 10.1080/07391102.2017.1401002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xueping Hu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Song Hu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Jiazhe Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yawen Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Li Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yanhong Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|