1
|
Gorb L, Shishkin OV, Zubatiuk T. The Structure of DNA Fragments: Quantum-Chemical Modelling. BBA ADVANCES 2023; 3:100082. [PMID: 37082263 PMCID: PMC10074966 DOI: 10.1016/j.bbadva.2023.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
In this review, we analyze and systematize our computational studies of the nucleic acid duplex formations and thermodynamic stability under the different factors of investigation. The proposed structural models of mini-helix contains N nucleobase pairs (N = 3-5); QM structural data suggest that the helical conformations of mini-helix adopt geometrical parameters comparable to those of natural A- and B-DNA forms under specific conditions as micro hydration and charge compensation. The gas-phase models adopt non regular conformations between the helical form and a ladder form.. The natural helical shape of DNA mini-helix is stabilized by the presence of counterions or by explicit micro-hydration of the major and minor groves. The presence of aqueous solution is shown as a minor factor for the helical shape formation. The studies are performed at the level of density functional theory.
Collapse
Affiliation(s)
- Leonid Gorb
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo str., 03680 Kyiv, Ukraine
- QSAR Lab Ltd., Trzy Lipy 3, B, 80-172 Gdańsk, Poland
- Corresponding author
| | - Oleg V. Shishkin
- State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, Nauky Av. 60, 61072 Kharkiv, Ukraine
| | - Tetiana Zubatiuk
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Sin KR, Kim CJ, Ko SG, Hwang TM, Han YN, Pak YN. Inclusion of thymol into cucurbiturils: density functional theory approach with dispersion correction and natural bond orbital analysis. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Nieuwland C, Hamlin TA, Fonseca Guerra C, Barone G, Bickelhaupt FM. B-DNA Structure and Stability: The Role of Nucleotide Composition and Order. ChemistryOpen 2022; 11:e202100231. [PMID: 35083880 PMCID: PMC8805170 DOI: 10.1002/open.202100231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/10/2021] [Indexed: 11/08/2022] Open
Abstract
We have quantum chemically analyzed the influence of nucleotide composition and sequence (that is, order) on the stability of double-stranded B-DNA triplets in aqueous solution. To this end, we have investigated the structure and bonding of all 32 possible DNA duplexes with Watson-Crick base pairing, using dispersion-corrected DFT at the BLYP-D3(BJ)/TZ2P level and COSMO for simulating aqueous solvation. We find enhanced stabilities for duplexes possessing a higher GC base pair content. Our activation strain analyses unexpectedly identify the loss of stacking interactions within individual strands as a destabilizing factor in the duplex formation, in addition to the better-known effects of partial desolvation. Furthermore, we show that the sequence-dependent differences in the interaction energy for duplexes of the same overall base pair composition result from the so-called "diagonal interactions" or "cross terms". Whether cross terms are stabilizing or destabilizing depends on the nature of the electrostatic interaction between polar functional groups in the pertinent nucleobases.
Collapse
Affiliation(s)
- Celine Nieuwland
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
| | - Célia Fonseca Guerra
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
- Leiden Institute of ChemistryGorlaeus LaboratoriesLeiden UniversityEinsteinweg 552300 CCLeiden (TheNetherlands
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e FarmaceuticheUniversità degli Studi di PalermoViale delle Scienze, Edificio 1790128PalermoItaly
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
- Institute of Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 1356525 AJNijmegen (TheNetherlands
| |
Collapse
|
4
|
Switzer C. A DNA tetraplex composed of two continuously hydrogen-bonded helical arrays of isoguanine (isoG). Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Isomorphic building blocks for information-bearing duplexes—part 2: pyrimidine base pairs with sugar phosphate backbones. Struct Chem 2021. [DOI: 10.1007/s11224-021-01739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Gorb L, Pekh A, Nyporko A, Ilchenko M, Golius A, Zubatiuk T, Zubatyuk R, Dubey I, Hovorun DM, Leszczynski J. Effect of Microenvironment on the Geometrical Structure of d(A)5 d(T)5 and d(G)5 d(C)5 DNA Mini-Helixes and the Dickerson Dodecamer: A Density Functional Theory Study. J Phys Chem B 2020; 124:9343-9353. [DOI: 10.1021/acs.jpcb.0c06154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Leonid Gorb
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Vul. Zabolotnogo, Kyiv 03143, Ukraine
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, Mississippi 39217, United States
| | - Anatolii Pekh
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv 03022, Ukraine
| | - Alexey Nyporko
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv 03022, Ukraine
| | - Mykola Ilchenko
- Department of Synthetic Bioregulators, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Vul. Zabolotnogo, Kyiv 03143, Ukraine
| | - Anastasiia Golius
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, Mississippi 39217, United States
| | - Tetiana Zubatiuk
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, Mississippi 39217, United States
| | - Roman Zubatyuk
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, Mississippi 39217, United States
| | - Igor Dubey
- Department of Synthetic Bioregulators, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Vul. Zabolotnogo, Kyiv 03143, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Vul. Zabolotnogo, Kyiv 03143, Ukraine
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, Mississippi 39217, United States
| |
Collapse
|
7
|
Kruse H, Šponer J. Revisiting the Potential Energy Surface of the Stacked Cytosine Dimer: FNO-CCSD(T) Interaction Energies, SAPT Decompositions, and Benchmarking. J Phys Chem A 2019; 123:9209-9222. [PMID: 31560201 DOI: 10.1021/acs.jpca.9b05940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleobase stacking interactions are crucial for the stability of nucleic acids. This study investigates base stacking energies of the cytosine homodimer in different configurations, including intermolecular separation plots, detailed twist dependence, and displaced structures. Highly accurate ab initio quantum chemical single point energies using an energy function based on MP2 complete basis set extrapolation ([6 → 7]ZaPa-NR) and a CCSD(T)/cc-pVTZ-F12 high-level correction are presented as new reference data, providing the most accurate stacking energies of nucleobase dimers currently available. Accurate SAPT2+(3)δMP2 energy decomposition is used to obtain detailed insights into the nature of base stacking interactions at varying vertical distances and twist values. The ab initio symmetry adapted perturbation theory (SAPT) energy decomposition suggests that the base stacking originates from an intricate interplay between dispersion attraction, short-range exchange-repulsion, and Coulomb interaction. The interpretation of the SAPT data is a complex issue as key energy terms vary substantially in the region of optimal (low energy) base stacking geometries. Thus, attempts to highlight one leading stabilizing SAPT base stacking term may be misleading and the outcome strongly depends on the used geometries within the range of geometries sampled in nucleic acids upon thermal fluctuations. Modern dispersion-corrected density functional theory (among them DSD-BLYP-D3, ωB97M-V, and ωB97M-D3BJ) is benchmarked and often reaches up to spectroscopic accuracy (below 1 kJ/mol). The classical AMBER force field is benchmarked with multiple different sets of point-charges (e.g. HF, DFT, and MP2-based) and is found to produce reasonable agreement with the benchmark data.
Collapse
Affiliation(s)
- Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135 , CZ-61265 Brno , Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135 , CZ-61265 Brno , Czech Republic.,Central European Institute of Technology , Masaryk University , Kamenice 753/5 , 62500 Brno , Czech Republic
| |
Collapse
|