1
|
Carugo OI. Chalcogen bonds formed by protein sulfur atoms in proteins. A survey of high-resolution structures deposited in the protein data bank. J Biomol Struct Dyn 2023; 41:9576-9582. [PMID: 36342326 DOI: 10.1080/07391102.2022.2143427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
The presence of chalcogen bonds in native proteins was investigated on a non-redundant and high-resolution (≤ 1 Angstrom) set of protein crystal structures deposited in the Protein Data Bank. It was observed that about one half of the sulfur atoms of methionines and disulfide bridges from chalcogen bonds with nucleophiles (oxygen and sulfur atoms, and aromatic rings). This suggests that chalcogen bonds are a non-bonding interaction important for protein stability. Quite numerous chalcogen bonds involve water molecules. Interestingly, in the case of disulfide bridges, chalcogen bonds have a marked tendency to occur along the S-S bond extension rather than along the C-S bond extension. Additionally, it has been observed that closer residues have a higher probability of being connected by a chalcogen bonds, while the secondary structure of the two residues connected by a chalcogen bond do not correlate with its formation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Oliviero Italo Carugo
- Department of Chemistry, University of Pavia, Pavia, Italy
- Department of Structural and Computational Biology, Max Perutz Labs University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Farka D, Kříž K, Fanfrlík J. Strategies for the Design of PEDOT Analogues Unraveled: the Use of Chalcogen Bonds and σ-Holes. J Phys Chem A 2023; 127:3779-3787. [PMID: 37075228 PMCID: PMC10165655 DOI: 10.1021/acs.jpca.2c08965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
In this theoretical study, we set out to demonstrate the substitution effect of PEDOT analogues on planarity as an intrinsic indicator for electronic performance. We perform a quantum mechanical (DFT) study of PEDOT and analogous model systems and demonstrate the usefulness of the ωB97X-V functional to simulate chalcogen bonds and other noncovalent interactions. We confirm that the chalcogen bond stabilizes the planar conformation and further visualize its presence via the electrostatic potential surface. In comparison to the prevalent B3LYP, we gain 4-fold savings in computational time and simulate model systems of up to a dodecamer. Implications for design of conductive polymers can be drawn from the results, and an example for self-doped polymers is presented where modulation of the strength of the chalcogen bond plays a significant role.
Collapse
Affiliation(s)
- Dominik Farka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Nám. 2, 160 00 Prague, Czech Republic
| | - Kristian Kříž
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Nám. 2, 160 00 Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Nám. 2, 160 00 Prague, Czech Republic
| |
Collapse
|
3
|
Jena S, Dutta J, Tulsiyan KD, Sahu AK, Choudhury SS, Biswal HS. Noncovalent interactions in proteins and nucleic acids: beyond hydrogen bonding and π-stacking. Chem Soc Rev 2022; 51:4261-4286. [PMID: 35560317 DOI: 10.1039/d2cs00133k] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding the noncovalent interactions (NCIs) among the residues of proteins and nucleic acids, and between drugs and proteins/nucleic acids, etc., has extraordinary relevance in biomolecular structure and function. It helps in interpreting the dynamics of complex biological systems and enzymatic activity, which is esential for new drug design and efficient drug delivery. NCIs like hydrogen bonding (H-bonding) and π-stacking have been researchers' delight for a long time. Prominent among the recently discovered NCIs are halogen, chalcogen, pnictogen, tetrel, carbo-hydrogen, and spodium bonding, and n → π* interaction. These NCIs have caught the imaginations of various research groups in recent years while explaining several chemical and biological processes. At this stage, a holistic view of these new ideas and findings lying scattered can undoubtedly trigger our minds to explore more. The present review attempts to address NCIs beyond H-bonding and π-stacking, which are mainly n → σ*, n → π* and σ → σ* type interactions. Five of the seven NCIs mentioned earlier are linked to five non-inert end groups of the modern periodic table. Halogen (group-17) bonding is one of the oldest and most explored NCIs, which finds its relevance in biomolecules due to the phase correction and inhibitory properties of halogens. Chalcogen (group 16) bonding serves as a redox-active functional group of different active sites of enzymes and acts as a nucleophile in proteases and phosphates. Pnictogen (group 15), tetrel (group 14), triel (group 13) and spodium (group 12) bonding does exist in biomolecules. The n → π* interactions are linked to backbone carbonyl groups and protein side chains. Thus, they are crucial in determining the conformational stability of the secondary structures in proteins. In addition, a more recently discovered to and fro σ → σ* type interaction, namely carbo-hydrogen bonding, is also present in protein-ligand systems. This review summarizes these grand epiphanies routinely used to elucidate the structure and dynamics of biomolecules, their enzymatic activities, and their application in drug discovery. It also briefs about the future perspectives and challenges posed to the spectroscopists and theoreticians.
Collapse
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Akshay Kumar Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Shubhranshu Shekhar Choudhury
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
4
|
Carugo O, Resnati G, Metrangolo P. Chalcogen Bonds Involving Selenium in Protein Structures. ACS Chem Biol 2021; 16:1622-1627. [PMID: 34477364 PMCID: PMC8453483 DOI: 10.1021/acschembio.1c00441] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 12/11/2022]
Abstract
Chalcogen bonds are the specific interactions involving group 16 elements as electrophilic sites. The role of chalcogen atoms as sticky sites in biomolecules is underappreciated, and the few available studies have mostly focused on S. Here, we carried out a statistical analysis over 3562 protein structures in the Protein Data Bank (PDB) containing 18 266 selenomethionines and found that Se···O chalcogen bonds are commonplace. These findings may help the future design of functional peptides and contribute to understanding the role of Se in nature.
Collapse
Affiliation(s)
- Oliviero Carugo
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Giuseppe Resnati
- Department
of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy
| | - Pierangelo Metrangolo
- Department
of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
5
|
Fernández Riveras JA, Frontera A, Bauzá A. Selenium chalcogen bonds are involved in protein-carbohydrate recognition: a combined PDB and theoretical study. Phys Chem Chem Phys 2021; 23:17656-17662. [PMID: 34373871 DOI: 10.1039/d1cp01929e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this manuscript the ability of selenium carbohydrates to undergo chalcogen bonding (ChB) interactions with protein residues has been studied at the RI-MP2/def2-TZVP level of theory. An inspection of the Protein Data Bank (PDB) revealed SeA (A = O, C and S) intermolecular contacts involving Se-pyranose ligands and ASP, TYR, SER and MET residues. Theoretical models were built to analyse the strength and directionality of the interaction together with "Atoms in Molecules" (AIM), Natural Bonding Orbital (NBO) and Non Covalent Interactions plot (NCIplot) analyses, which further assisted in the characterization of the ChBs described herein. We expect that the results from this study will be useful to expand the current knowledge regarding biological ChBs as well as to increase the visibility of the interaction among the carbohydrate chemistry community.
Collapse
Affiliation(s)
- Jose A Fernández Riveras
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, Palma (Baleares) 07122, Spain.
| | | | | |
Collapse
|
6
|
Galmés B, Adrover J, Terraneo G, Frontera A, Resnati G. Radicalradical chalcogen bonds: CSD analysis and DFT calculations. Phys Chem Chem Phys 2020; 22:12757-12765. [PMID: 32463046 DOI: 10.1039/d0cp01643h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This manuscript reports a combination of crystallographic analysis (Cambridge Structural Database) and theoretical DFT calculations in chalcogen bonding interactions involving radicals in both the Ch bond (ChB) donor and acceptor. As a radical ChB acceptor (nucleophile) we have used benzodithiazolyl radical (BDTA) and as Ch bond donors (electrophile) we have used dithiadiazolyl and diselenadiazolyl radicals of the general formula p-X-C6F4-CNChChN (Ch = S, and Se). We have evaluated how the para substituent (X) affects the interaction energy, spin density and charge/spin transfer from the electron rich BDTA radical to the electron poor dichalcogenadiazolyl ring. The ability of the latter rings to form ChBs in the solid state has been examined by a comprehensive search in the CSD; several cases are used to exemplify the preferred geometric features of the complexes and they are compared with the theory. The molecular surface electrostatic potentials calculated for these ChB donors allow for a very precise rationalization of the self-assembly motifs most frequently adopted in the crystalline state and of their relative robustness.
Collapse
Affiliation(s)
- Bartomeu Galmés
- Department of Chemistry Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Jaume Adrover
- Department of Chemistry Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Giancarlo Terraneo
- Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy.
| | - Antonio Frontera
- Department of Chemistry Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Giuseppe Resnati
- Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy.
| |
Collapse
|
7
|
Hendinejad N, Timerghazin QK. Biological control of S-nitrosothiol reactivity: potential role of sigma-hole interactions. Phys Chem Chem Phys 2020; 22:6595-6605. [PMID: 32159182 DOI: 10.1039/c9cp06377c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
S-Nitrosothiols (RSNOs) are ubiquitous biomolecules whose chemistry is tightly controlled in vivo, although the specific molecular mechanisms behind this biological control remain unknown. In this work, we demonstrate, using high-level ab initio and DFT calculations, the ability of RSNOs to participate in intermolecular interactions with electron pair donors/Lewis bases (LBs) via a σ-hole, a region of positive electrostatic potential on the molecular surface at the extension of the N-S bond. Importantly, σ-hole binding is able to modulate the properties of RSNOs by changing the balance between two chemically opposite (antagonistic) resonance components, R-S+[double bond, length as m-dash]N-O- (D) and R-S-/NO+ (I), which are, in addition to the main resonance structure R-S-N[double bond, length as m-dash]O, necessary to describe the unusual electronic structure of RSNOs. σ-Hole binding at the sulfur atom of RSNO promotes the resonance structure D and reduces the resonance structure I, thereby stabilizing the weak N-S bond and making the sulfur atom more electrophilic. On the other hand, increasing the D-character of RSNO by other means (e.g. via N- or O-coordination of a Lewis acid) in turn enhances the σ-hole bonding. Our calculations suggest that in the protein environment a combination of σ-hole bonding of a negatively charged amino acid sidechain at the sulfur atom and N- or O-coordination of a positively charged amino acid sidechain is expected to have a profound effect on the RSNO electronic structure and reactivity.
Collapse
Affiliation(s)
- Niloufar Hendinejad
- Department of Chemistry, Marquette University, P. O. Box 1881, Milwaukee, Wisconsin 53201-1881, USA.
| | | |
Collapse
|
8
|
Abstract
A complete inventory of the forces governing protein folding is critical for productive protein modeling, including structure prediction and de novo design, as well as understanding protein misfolding diseases of clinical significance. The dominant contributors to protein folding include the hydrophobic effect and conventional hydrogen bonding, along with Coulombic and van der Waals interactions. Over the past few decades, important additional contributors have been identified, including C-H···O hydrogen bonding, n→π* interactions, C5 hydrogen bonding, chalcogen bonding, and interactions involving aromatic rings (cation-π, X-H···π, π-π, anion-π, and sulfur-arene). These secondary contributions fall into two general classes: (1) weak but abundant interactions of the protein main chain and (2) strong but less frequent interactions involving protein side chains. Though interactions with high individual energies play important roles in specifying nonlocal molecular contacts and ligand binding, we estimate that weak but abundant interactions are likely to make greater overall contributions to protein folding, particularly at the level of secondary structure. Further research is likely to illuminate additional roles of these noncanonical interactions and could also reveal contributions yet unknown.
Collapse
Affiliation(s)
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Fellowes T, White JM. New insights into chalcogen bonding provided by co-crystal structures of benzisoselenazolinone derivatives and nitrogen bases. CrystEngComm 2019. [DOI: 10.1039/c8ce01853g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A number of derivatives of benzisoselenazolinones, including the drug ebselen, have been synthesized, and their interactions with various nitrogen bases characterized through X-ray crystallography.
Collapse
Affiliation(s)
- Thomas Fellowes
- School of Chemistry and Bio21 Institute
- University of Melbourne
- Parkville
- Australia
| | - Jonathan M. White
- School of Chemistry and Bio21 Institute
- University of Melbourne
- Parkville
- Australia
| |
Collapse
|
10
|
Vogel L, Wonner P, Huber SM. Chalcogen Bonding: An Overview. Angew Chem Int Ed Engl 2018; 58:1880-1891. [PMID: 30225899 DOI: 10.1002/anie.201809432] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 01/23/2023]
Abstract
In the last few decades, "unusual" noncovalent interactions like anion-π and halogen bonding have emerged as interesting alternatives to the ubiquitous hydrogen bonding in many research areas. This is also true, to a somewhat lesser extent, for chalcogen bonding, the noncovalent interaction involving Lewis acidic chalcogen centers. Herein, we aim to provide an overview on the use of chalcogen bonding in crystal engineering and in solution, with a focus on the recent developments concerning intermolecular chalcogen bonding in solution-phase applications. In the solid phase, chalcogen bonding has been used for the construction of nano-sized structures and the self-assembly of sophisticated self-complementary arrays. In solution, until very recently applications mostly focused on intramolecular interactions which stabilized the conformation of intermediates or reagents. In the last few years, intermolecular chalcogen bonding has increasingly also been exploited in solution, most notably in anion recognition and transport as well as in organic synthesis and organocatalysis.
Collapse
Affiliation(s)
- Lukas Vogel
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Patrick Wonner
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Stefan M Huber
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
11
|
Affiliation(s)
- Lukas Vogel
- Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Deutschland
| | - Patrick Wonner
- Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Deutschland
| | - Stefan M. Huber
- Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Deutschland
| |
Collapse
|
12
|
Kříž K, Fanfrlík J, Lepšík M. Chalcogen Bonding in Protein-Ligand Complexes: PDB Survey and Quantum Mechanical Calculations. Chemphyschem 2018; 19:2540-2548. [PMID: 30003638 DOI: 10.1002/cphc.201800409] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Indexed: 11/10/2022]
Abstract
A chalcogen bond is a nonclassical noncovalent interaction which can stabilise small-molecule crystals as well as protein structures. Here, we systematically explore the stabilising potential of chalcogen bonding in protein-ligand complexes in the Protein Data Bank (PDB). We have found that a large fraction (23 %) of complexes with a S/Se-containing ligand feature close S/Se⋅⋅⋅O/N/S contacts. Eleven non-redundant representative potential S/Se⋅⋅⋅O chalcogen-bond motifs were selected and truncated to model systems and seven more model systems were prepared by S-to-Se substitution. These systems were then subjected to analysis by quantum chemical (QM) methods-electrostatic potential, geometry optimisation or interaction energy calculations, including solvent effects. The QM calculations indicate that chalcogen bonding does indeed play a dominant role in stabilising some of the interaction motifs studied. We thus advocate further exploration of chalcogen bonding with the aim of potential future use in structure-based drug design.
Collapse
Affiliation(s)
- Kristian Kříž
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic.,Department of Physical and Macromolecular Chemistry Faculty of Science, Charles University, Hlavova 8, 128 40, Praha 2, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| |
Collapse
|
13
|
Mena-Barragán T, García-Moreno MI, Sevšek A, Okazaki T, Nanba E, Higaki K, Martin NI, Pieters RJ, Fernández JMG, Mellet CO. Probing the Inhibitor versus Chaperone Properties of sp²-Iminosugars towards Human β-Glucocerebrosidase: A Picomolar Chaperone for Gaucher Disease. Molecules 2018; 23:E927. [PMID: 29673163 PMCID: PMC6017062 DOI: 10.3390/molecules23040927] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 03/26/2018] [Accepted: 04/12/2018] [Indexed: 12/14/2022] Open
Abstract
A series of sp²-iminosugar glycomimetics differing in the reducing or nonreducing character, the configurational pattern (d-gluco or l-ido), the architecture of the glycone skeleton, and the nature of the nonglycone substituent has been synthesized and assayed for their inhibition properties towards commercial glycosidases. On the basis of their affinity and selectivity towards GH1 β-glucosidases, reducing and nonreducing bicyclic derivatives having a hydroxylation profile of structural complementarity with d-glucose and incorporating an N′-octyl-isourea or -isothiourea segment were selected for further evaluation of their inhibitory/chaperoning potential against human glucocerebrosidase (GCase). The 1-deoxynojirimycin (DNJ)-related nonreducing conjugates behaved as stronger GCase inhibitors than the reducing counterparts and exhibited potent chaperoning capabilities in Gaucher fibroblasts hosting the neuronopathic G188S/G183W mutation, the isothiourea derivative being indeed one of the most efficient chaperone candidates reported up to date (70% activity enhancement at 20 pM). At their optimal concentration, the four selected compounds promoted mutant GCase activity enhancements over 3-fold; yet, the inhibitor/chaperoning balance became unfavorable at much lower concentration for nonreducing as compared to reducing derivatives.
Collapse
Affiliation(s)
- Teresa Mena-Barragán
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/Profesor García González 1, 41011 Sevilla, Spain.
| | - M Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/Profesor García González 1, 41011 Sevilla, Spain.
| | - Alen Sevšek
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Tetsuya Okazaki
- Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago 680-8550, Japan.
| | - Eiji Nanba
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan.
| | - Katsumi Higaki
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan.
| | - Nathaniel I Martin
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC-University of Sevilla, Avda. Americo Vespucio 49, 41092 Sevilla, Spain.
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/Profesor García González 1, 41011 Sevilla, Spain.
| |
Collapse
|