1
|
Scheiner S, Michalczyk M, Zierkiewicz W. Involvement of Arsenic Atom of AsF 3 in Five Pnicogen Bonds: Differences between X-ray Structure and Theoretical Models. Molecules 2022; 27:6486. [PMID: 36235021 PMCID: PMC9572024 DOI: 10.3390/molecules27196486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Bonding within the AsF3 crystal is analyzed via quantum chemical methods so as to identify and quantify the pnicogen bonds that are present. The structure of a finite crystal segment containing nine molecules is compared with that of a fully optimized cluster of the same size. The geometries are qualitatively different, with a much larger binding energy within the optimized nonamer. Although the total interaction energy of a central unit with the remaining peripheral molecules is comparable for the two structures, the binding of the peripherals with one another is far larger in the optimized cluster. This distinction of much stronger total binding within the optimized cluster is not limited to the nonamer but repeats itself for smaller aggregates as well. The average binding energy of the cluster rises quickly with size, asymptotically approaching a value nearly triple that of the dimer.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
2
|
Varadwaj A, Varadwaj PR, Marques HM, Yamashita K. The Pnictogen Bond: The Covalently Bound Arsenic Atom in Molecular Entities in Crystals as a Pnictogen Bond Donor. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113421. [PMID: 35684359 PMCID: PMC9181914 DOI: 10.3390/molecules27113421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022]
Abstract
In chemical systems, the arsenic-centered pnictogen bond, or simply the arsenic bond, occurs when there is evidence of a net attractive interaction between the electrophilic region associated with a covalently or coordinately bound arsenic atom in a molecular entity and a nucleophile in another or the same molecular entity. It is the third member of the family of pnictogen bonds formed by the third atom of the pnictogen family, Group 15 of the periodic table, and is an inter- or intramolecular noncovalent interaction. In this overview, we present several illustrative crystal structures deposited into the Cambridge Structure Database (CSD) and the Inorganic Chemistry Structural Database (ICSD) during the last and current centuries to demonstrate that the arsenic atom in molecular entities has a significant ability to act as an electrophilic agent to make an attractive engagement with nucleophiles when in close vicinity, thereby forming σ-hole or π-hole interactions, and hence driving (in part, at least) the overall stability of the system’s crystalline phase. This overview does not include results from theoretical simulations reported by others as none of them address the signatory details of As-centered pnictogen bonds. Rather, we aimed at highlighting the interaction modes of arsenic-centered σ- and π-holes in the rationale design of crystal lattices to demonstrate that such interactions are abundant in crystalline materials, but care has to be taken to identify them as is usually done with the much more widely known noncovalent interactions in chemical systems, halogen bonding and hydrogen bonding. We also demonstrate that As-centered pnictogen bonds are usually accompanied by other primary and secondary interactions, which reinforce their occurrence and strength in most of the crystal structures illustrated. A statistical analysis of structures deposited into the CSD was performed for each interaction type As···D (D = N, O, S, Se, Te, F, Cl, Br, I, arene’s π system), thus providing insight into the typical nature of As···D interaction distances and ∠R–As···D bond angles of these interactions in crystals, where R is the remainder of the molecular entity.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Tokyo 113-8656, Japan;
- Correspondence: (A.V.); (P.R.V.)
| | - Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Tokyo 113-8656, Japan;
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
- Correspondence: (A.V.); (P.R.V.)
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Tokyo 113-8656, Japan;
| |
Collapse
|
3
|
Varadwaj A, Varadwaj PR, Marques HM, Yamashita K. The Stibium Bond or the Antimony-Centered Pnictogen Bond: The Covalently Bound Antimony Atom in Molecular Entities in Crystal Lattices as a Pnictogen Bond Donor. Int J Mol Sci 2022; 23:4674. [PMID: 35563065 PMCID: PMC9099767 DOI: 10.3390/ijms23094674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
A stibium bond, i.e., a non-covalent interaction formed by covalently or coordinately bound antimony, occurs in chemical systems when there is evidence of a net attractive interaction between the electrophilic region associated with an antimony atom and a nucleophile in another, or the same molecular entity. This is a pnictogen bond and are likely formed by the elements of the pnictogen family, Group 15, of the periodic table, and is an inter- or intra-molecular non-covalent interaction. This overview describes a set of illustrative crystal systems that were stabilized (at least partially) by means of stibium bonds, together with other non-covalent interactions (such as hydrogen bonds and halogen bonds), retrieved from either the Cambridge Structure Database (CSD) or the Inorganic Crystal Structure Database (ICSD). We demonstrate that these databases contain hundreds of crystal structures of various dimensions in which covalently or coordinately bound antimony atoms in molecular entities feature positive sites that productively interact with various Lewis bases containing O, N, F, Cl, Br, and I atoms in the same or different molecular entities, leading to the formation of stibium bonds, and hence, being partially responsible for the stability of the crystals. The geometric features, pro-molecular charge density isosurface topologies, and extrema of the molecular electrostatic potential model were collectively examined in some instances to illustrate the presence of Sb-centered pnictogen bonding in the representative crystal systems considered.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (A.V.); (K.Y.)
| | - Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (A.V.); (K.Y.)
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (A.V.); (K.Y.)
| |
Collapse
|
4
|
Zierkiewicz W, Grabarz A, Michalczyk M, Scheiner S. Competition between Inter and Intramolecular Tetrel Bonds: Theoretical Studies Complemented by CSD Survey. Chemphyschem 2021; 22:924-934. [PMID: 33876515 DOI: 10.1002/cphc.202100157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Indexed: 01/02/2023]
Abstract
Crystal structures document the ability of a TF3 group (T=Si, Ge, Sn, Pb) situated on a naphthalene system to engage in an intramolecular tetrel bond (TB) with an amino group on the adjoining ring. Ab initio calculations evaluate the strength of this bond and evaluate whether it can influence the ability of the T atom to engage in a second, intermolecular TB with another nucleophile. A very strong CN- anionic base can approach the T either along the extension of a T-C or T-F bond and form a strong TB with an interaction energy approaching 100 kcal/mol, although this bond is weakened a bit by the presence of the internal T⋅⋅⋅N bond. The much less potent NCH base engages in a correspondingly longer and weaker TB, less than 10 kcal/mol. Such an intermolecular TB is weakened by the presence of the internal TB, to the point that it only occurs for the two heavier tetrel atoms Sn and Pb.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Anna Grabarz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Utah, 84322-0300, USA
| |
Collapse
|
5
|
Michalczyk M, Malik M, Zierkiewicz W, Scheiner S. Experimental and Theoretical Studies of Dimers Stabilized by Two Chalcogen Bonds in the Presence of a N···N Pnicogen Bond. J Phys Chem A 2021; 125:657-668. [PMID: 33423496 DOI: 10.1021/acs.jpca.0c10814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The structure of the 5,6-dichloro-2,1,3-benzoselenadiazole homodimer, obtained by adding the ligand, 4,5-dichloro-o-phenylenediamine, to the methanolic solution of SeCl4, was determined by X-ray crystallography, augmented by Fourier transform infrared, Raman, and NMR spectroscopy. The binding motif involves a pair of Se···N chalcogen bonds, with a supplementary N···N pnicogen bond. Quantum calculations provide assessments of the strengths of the individual interactions as well as their contributing factors. All together, these three bonds compose a total interaction energy between 5.4 and 16.8 kcal/mol, with the larger chalcogen atom associated with the strongest interactions. Replacement of the Se atoms by S and Te analogues allows analysis of the dependence of these forces on the nature of the chalcogen atom. Calculations also measure the importance to the binding of the presence of a second N atom on each diazole unit as well as the substituted phenyl ring to which it is fused.
Collapse
Affiliation(s)
- Mariusz Michalczyk
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Magdalena Malik
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Logan, Utah 84322-0300, United States
| |
Collapse
|
6
|
Abstract
The fundamental underpinnings of noncovalent bonds are presented, focusing on the σ-hole interactions that are closely related to the H-bond. Different means of assessing their strength and the factors that control it are discussed. The establishment of a noncovalent bond is monitored as the two subunits are brought together, allowing the electrostatic, charge redistribution, and other effects to slowly take hold. Methods are discussed that permit prediction as to which site an approaching nucleophile will be drawn, and the maximum number of bonds around a central atom in its normal or hypervalent states is assessed. The manner in which a pair of anions can be held together despite an overall Coulombic repulsion is explained. The possibility that first-row atoms can participate in such bonds is discussed, along with the introduction of a tetrel analog of the dihydrogen bond.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
7
|
Pnictogen, chalcogen, and halogen bonds in catalytic systems: theoretical study and detailed comparison. J Mol Model 2019; 26:16. [DOI: 10.1007/s00894-019-4275-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
|
8
|
Zierkiewicz W, Wysokiński R, Michalczyk M, Scheiner S. Chalcogen bonding of two ligands to hypervalent YF 4 (Y = S, Se, Te, Po). Phys Chem Chem Phys 2019; 21:20829-20839. [PMID: 31517347 DOI: 10.1039/c9cp04006d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability of two NH3 ligands to engage in simultaneous chalcogen bonds to a hypervalent YF4 molecule, with Y = S, Se, Te, Po, is assessed via quantum calculations. The complex can take on one of two different geometries. The cis structure places the two ligands adjacent to one another in a pseudo-octahedral geometry, held there by a pair of σ-hole chalcogen bonds. The bases can also lie nearly opposite one another, in a distorted octahedron containing one π-hole and one strained σ-hole bond. The cis geometry is favored for Y = S, while Te, and Po tend toward the trans structure; they are nearly equally stable for Se. In either case, the binding energy rises rapidly with the size of the Y atom, exceeding 30 kcal mol-1 for PoF4.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Rafał Wysokiński
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Utah 84322-0300, USA.
| |
Collapse
|
9
|
Sruthi PK, Sarkar S, Ramanathan N, Sundararajan K. Elusive hypervalent phosphorus⋯π interactions: evidence for paradigm transformation from hydrogen to phosphorus bonding at low temperatures. Phys Chem Chem Phys 2019; 21:12250-12264. [DOI: 10.1039/c9cp01925a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A paradigm transformation from hydrogen to phosphorus bonding is found to depend on the proton affinity of the interacting π-systems.
Collapse
Affiliation(s)
- P. K. Sruthi
- Materials Chemistry and Metal Fuel Cycle Group
- Homi Bhabha National Institute
- Indira Gandhi Centre for Atomic Research
- Kalpakkam-603 102
- India
| | - Shubhra Sarkar
- Materials Chemistry and Metal Fuel Cycle Group
- Homi Bhabha National Institute
- Indira Gandhi Centre for Atomic Research
- Kalpakkam-603 102
- India
| | - N. Ramanathan
- Materials Chemistry and Metal Fuel Cycle Group
- Homi Bhabha National Institute
- Indira Gandhi Centre for Atomic Research
- Kalpakkam-603 102
- India
| | - K. Sundararajan
- Materials Chemistry and Metal Fuel Cycle Group
- Homi Bhabha National Institute
- Indira Gandhi Centre for Atomic Research
- Kalpakkam-603 102
- India
| |
Collapse
|
10
|
Wysokiński R, Michalczyk M, Zierkiewicz W, Scheiner S. Influence of monomer deformation on the competition between two types of σ-holes in tetrel bonds. Phys Chem Chem Phys 2019; 21:10336-10346. [DOI: 10.1039/c9cp01759c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Competition between two competing sites on a tetrel atom is explained by balance between structural deformation and σ-hole intensity.
Collapse
Affiliation(s)
- Rafał Wysokiński
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| |
Collapse
|
11
|
Michalczyk M, Zierkiewicz W, Scheiner S. Triel-Bonded Complexes between TrR3
(Tr=B, Al, Ga; R=H, F, Cl, Br, CH3
) and Pyrazine. Chemphyschem 2018; 19:3122-3133. [DOI: 10.1002/cphc.201800774] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Mariusz Michalczyk
- Faculty of Chemistry; Wrocław University of Science and Technology; Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry; Wrocław University of Science and Technology; Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry; Utah State University Logan; Utah 84322-0300 United States
| |
Collapse
|
12
|
Scheiner S. Ability of IR and NMR Spectral Data to Distinguish between a Tetrel Bond and a Hydrogen Bond. J Phys Chem A 2018; 122:7852-7862. [DOI: 10.1021/acs.jpca.8b07631] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
13
|
Comparison between Tetrel Bonded Complexes Stabilized by σ and π Hole Interactions. Molecules 2018; 23:molecules23061416. [PMID: 29891824 PMCID: PMC6100375 DOI: 10.3390/molecules23061416] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 01/22/2023] Open
Abstract
The σ-hole tetrel bonds formed by a tetravalent molecule are compared with those involving a π-hole above the tetrel atom in a trivalent bonding situation. The former are modeled by TH₄, TH₃F, and TH₂F₂ (T = Si, Ge, Sn) and the latter by TH₂=CH₂, THF=CH₂, and TF₂=CH₂, all paired with NH₃ as Lewis base. The latter π-bonded complexes are considerably more strongly bound, despite the near equivalence of the σ and π-hole intensities. The larger binding energies of the π-dimers are attributed to greater electrostatic attraction and orbital interaction. Each progressive replacement of H by F increases the strength of the tetrel bond, whether σ or π. The magnitudes of the maxima of the molecular electrostatic potential in the two types of systems are not good indicators of either the interaction energy or even the full Coulombic energy. The geometry of the Lewis acid is significantly distorted by the formation of the dimer, more so in the case of the σ-bonded complexes, and this deformation intensifies the σ and π holes.
Collapse
|
14
|
Scheiner S, Lu J. Halogen, Chalcogen, and Pnicogen Bonding Involving Hypervalent Atoms. Chemistry 2018; 24:8167-8177. [DOI: 10.1002/chem.201800511] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry; Utah State University; Logan UT 84322-0300 USA
| | - Jia Lu
- Department of Chemistry and Biochemistry; Utah State University; Logan UT 84322-0300 USA
| |
Collapse
|
15
|
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
16
|
Zierkiewicz W, Michalczyk M, Scheiner S. Implications of monomer deformation for tetrel and pnicogen bonds. Phys Chem Chem Phys 2018. [DOI: 10.1039/c8cp00430g] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Monomer rearrangement raises the interaction energy by up to 20 kcal mol−1and intensifies its σ-hole by a factor of 1.5–2.9.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| |
Collapse
|
17
|
Mahmoudi G, Zaręba JK, Bauzá A, Kubicki M, Bartyzel A, Keramidas AD, Butusov L, Mirosław B, Frontera A. Recurrent supramolecular motifs in discrete complexes and coordination polymers based on mercury halides: prevalence of chelate ring stacking and substituent effects. CrystEngComm 2018. [DOI: 10.1039/c7ce02166f] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report the synthesis, X-ray characterization and DFT study of five Hg(ii) complexes with Schiff bases containing a nicotinohydrazide core to explore the formation of chelate-ring π-stacking interactions.
Collapse
Affiliation(s)
- Ghodrat Mahmoudi
- Department of Chemistry
- Faculty of Science
- University of Maragheh
- Maragheh
- Iran
| | - Jan K. Zaręba
- Advanced Materials Engineering and Modelling Group
- Wroclaw University of Science and Technology
- Wrocław
- Poland
| | - Antonio Bauzá
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma (Baleares)
- Spain
| | - Maciej Kubicki
- Faculty of Chemistry
- Adam Mickiewicz University in Poznan
- 61-614 Poznań
- Poland
| | - Agata Bartyzel
- Department of General and Coordination Chemistry
- Maria Curie-Skłodowska University
- 20-031 Lublin
- Poland
| | | | | | - Barbara Mirosław
- Department of Crystallography
- Faculty of Chemistry
- Maria Curie-Sklodowska University
- 20-031 Lublin
- Poland
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma (Baleares)
- Spain
| |
Collapse
|