1
|
Mai A, Hadnagy E, Shi Q, Ezeonu L, Robbins JP, Podkolzin SG, Koutsospyros A, Christodoulatos C. Degradation and fate of 2,4-dinitroanisole (DNAN) and its intermediates treated with Mg/Cu bimetal: Surface examination with XAS, DFT, and LDI-MS. J Environ Sci (China) 2023; 129:161-173. [PMID: 36804233 DOI: 10.1016/j.jes.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/18/2023]
Abstract
A novel Mg-based bimetal reagent (Mg/Cu) was used as an enhanced reductive system to degrade insensitive munition 2,4-dinitroanisole (DNAN), a contaminant found in energetic-laden waste. Degradation of DNAN was significantly impacted by dissolved oxygen and studied in anoxic and oxic bimetal systems (i.e., purging with N2, air, or O2 gas). Degradation occurred through sequential nitroreduction: first one nitro group was reduced (ortho or para) to form short-lived intermediates 2-amino-4-nitroanisole or 4-amino-2-nitroanisole (2-ANAN or 4-ANAN), and then subsequent reduction of the other nitro group formed 2,4-diaminoanisole (DAAN). The nitro-amino intermediates demonstrated regioselective reduction in the ortho position to 2-ANAN; Regioselectivity was also impacted by the anoxic/oxic environment. Under O2-purging DNAN degradation rate was slightly enhanced, but most notably O2 significantly accelerated DAAN generation. DAAN also further degraded only in the oxygenated Mg/Cu system. Adsorption of DNAN byproducts to the reagent occurred regardless of anoxic/oxic condition, resulting in a partition of carbon mass between the adsorbed phase (27%-35%) and dissolved phase (59%-72%). Additional surface techniques were applied to investigate contaminant interaction with Cu. Density functional theory (DFT) calculations identified preferential adsorption structures for DNAN on Cu with binding through two O atoms of one or both nitro groups. X-ray absorption spectroscopy (XAS) measurements determined the oxidation state of catalytic metal Cu and formation of a Cu-O-N bond during treatment. Laser desorption ionization mass spectrometry (LDI-MS) measurements also identified intermediate 2-ANAN adsorbed to the bimetal surface.
Collapse
Affiliation(s)
- Andrew Mai
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | - Emese Hadnagy
- School of Engineering and Technology, University of Washington Tacoma, Tacoma, WA 98402, USA
| | - Qiantao Shi
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Lotanna Ezeonu
- School of Engineering and Technology, University of Washington Tacoma, Tacoma, WA 98402, USA
| | - Jason P Robbins
- School of Engineering and Technology, University of Washington Tacoma, Tacoma, WA 98402, USA
| | - Simon G Podkolzin
- School of Engineering and Technology, University of Washington Tacoma, Tacoma, WA 98402, USA
| | - Agamemnon Koutsospyros
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | | |
Collapse
|
2
|
Xia H, Zhang W, Yang Y, Zhang W, Purchase D, Zhao C, Song X, Wang Y. Degradation mechanism of tris(2-chloroethyl) phosphate (TCEP) as an emerging contaminant in advanced oxidation processes: A DFT modelling approach. CHEMOSPHERE 2021; 273:129674. [PMID: 33571912 DOI: 10.1016/j.chemosphere.2021.129674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/23/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
As a typical toxic organophosphate and emerging contaminant, tris(2-chloroethyl) phosphate (TCEP) is resistant to conventional water treatment processes. Studies on advanced oxidation processes (AOPs) to degrade TCEP have received increasing attention, but the detailed mechanism is not yet fully understood. This study investigated the mechanistic details of TCEP degradation promoted by OH by using the density functional theory (DFT) method. Our results demonstrated that in the initial step, energy barriers of the hydrogen abstraction pathways were no more than 7 kcal/mol. Cleavage of the P-O or C-Cl bond was possible to occur, whilst the C-O or C-C cleavage had to overcome an energy barrier above 50 kcal/mol, which was too high for mild experimental conditions. The bond dissociation energy (BDE) combined with the distortion/interaction energy (DIE) analysis disclosed origin of the various reactivities of each site of TCEP. The systematic calculations on the transformation of products generated in the initial step showed remarkable exothermic property. The novel information at molecular level provides insight on how these products are generated and offers valuable theoretical guidance to help develop more effective AOPs to degrade TCEP or other emerging environmental contaminant.
Collapse
Affiliation(s)
- Hui Xia
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang, 110044, China
| | - Wenjing Zhang
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yuesuo Yang
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang, 110044, China; Key Laboratory of Groundwater Environment and Resources (Jilin University), Ministry of Education, Changchun, 130021, China.
| | - Wei Zhang
- College of Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, United Kingdom.
| | - Diane Purchase
- Department of Natural Sciences, Middlesex University, The Burroughs, London, UK
| | - Chuanqi Zhao
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang, 110044, China
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang, 110044, China
| | - Yuanyuan Wang
- Key Laboratory of Groundwater Environment and Resources (Jilin University), Ministry of Education, Changchun, 130021, China
| |
Collapse
|
3
|
Ao XW, Eloranta J, Huang CH, Santoro D, Sun WJ, Lu ZD, Li C. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. WATER RESEARCH 2021; 188:116479. [PMID: 33069949 DOI: 10.1016/j.watres.2020.116479] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/25/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Peracetic acid (PAA) has attracted growing attention as an alternative oxidant and disinfectant in wastewater treatment due to the increased demand to reduce chlorine usage and control disinfection byproducts (DBPs). These applications have stimulated new investigations on PAA-based advanced oxidation processes (AOPs), which can enhance water disinfection and remove micropollutants. The purpose of this review is to conduct a comprehensive analysis of scientific information and experimental data reported in recent years on the applications of PAA-based AOPs for the removal of chemical and microbiological micropollutants from water and wastewater. Various methods of PAA activation, including the supply of external energy and metal/metal-free catalysts, as well as their activation mechanisms are discussed. Then, a review on the usage of PAA-based AOPs for contaminant degradation is given. The degradation mechanisms of organic compounds and the influence of the controlling parameters of PAA-based treatment systems are summarized and discussed. Concurrently, the application of PAA-based AOPs for water disinfection and the related mechanisms of microorganism inactivation are also reviewed. Since combining UV light with PAA is the most commonly investigated PAA-based AOP for simultaneous pathogen inactivation and micropollutant oxidation, we have also focused on PAA microbial inactivation kinetics, together with the effects of key experimental parameters on the process. Moreover, we have discussed the advantages and disadvantages of UV/PAA as an AOP against the well-known and established UV/H2O2. Finally, the knowledge gaps, challenges, and new opportunities for research in this field are discussed. This critical review will facilitate an in-depth understanding of the PAA-based AOPs for water and wastewater treatment and provide useful perspectives for future research and development for PAA-based technologies.
Collapse
Affiliation(s)
- Xiu-Wei Ao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jussi Eloranta
- Department of Chemistry and Biochemistry, California State University at Northridge, Northridge, CA, 91330, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | | - Wen-Jun Sun
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Ze-Dong Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Chen Li
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Xu L, Li W, Ye X, Zhang E, Wang C, Yang J. Reaction mechanism of chloramphenicol with hydroxyl radicals for advanced oxidation processes using DFT calculations. J Mol Model 2020; 26:352. [PMID: 33242158 DOI: 10.1007/s00894-020-04616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/22/2020] [Indexed: 11/26/2022]
Abstract
The structure properties of chloramphenicol (CAP), including bond information and the Fukui function for the atoms in the main chain, were investigated computationally by density functional theory (DFT). The result shows that the chiral carbons in CAP offer the most active positions for chemical reactions, which is in good agreement with the experiment. The detailed degradation mechanism for CAP with hydroxyl radicals in advanced oxidation processes is further studied at the SMD/M06-2X/6-311 + G(d,p) level of theory. The main reaction methods, including the addition-elimination reaction, hydrogen abstract reaction, hydroxyl radical addition, and bond-breaking processes, are calculated. The results show that the nitro-elimination reaction is the most likely reaction in the first step of the degradation of CAP, and the latter two processes are more likely to be hydrogen abstract reactions. The details for the transition states, intermediate radicals, and free energy surfaces for all proposed reactions are given, which makes up for a lack of experimental knowledge.
Collapse
Affiliation(s)
- Lejin Xu
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan, 430074, People's Republic of China.
| | - Wuyang Li
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan, 430074, People's Republic of China
| | - Xiuyou Ye
- Zhejiang Uish Environmental Technology Co., Ltd., Ningbo, 315336, Zhejiang, People's Republic of China
| | - Enhao Zhang
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan, 430074, People's Republic of China
| | - Chonghao Wang
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan, 430074, People's Republic of China
| | - Jun Yang
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan, 430074, People's Republic of China
| |
Collapse
|
5
|
Zhou Y, Yang Z, Wei T, Gu L, Zhu Y. A Density Functional Theory Study toward Ring-Opening Reaction Mechanisms of 2,4,6-Trinitrotoluene's Meisenheimer Complex for the Biodegradation of Old Yellow Enzyme Flavoprotein Reductase. ACS OMEGA 2020; 5:23613-23620. [PMID: 32984681 PMCID: PMC7512433 DOI: 10.1021/acsomega.0c02162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
The subsequent degradation pathway of the dihydride-Meisenheimer complex (2H--TNT), which is the metabolite of 2,4,6-trinitrotoluene (TNT) by old yellow enzyme flavoprotein reductases of yeast and bacteria, was investigated computationally at the SMD/TPSSH/6-311+G(d,p) level of theory. Combining the experimentally detected products, a series of protonation, addition, substitution (dearomatization), and ring-opening reaction processes from 2H--TNT to alkanes were proposed. By analyzing reaction free energies, we determined that the protonation is more advantageous thermodynamically than the dimerization reaction. In the ring-opening reaction of naphthenic products, the water molecule-mediated proton transfer mechanism plays a key role. The corresponding activation energy barrier is 37.7 kcal·mol-1, which implies the difficulty of this reaction. Based on our calculations, we gave an optimum pathway for TNT mineralization. Our conclusions agree qualitatively with available experimental results. The details on transition states, intermediates, and free energy surfaces for all proposed reactions are given and make up for a lack of experimental knowledge.
Collapse
Affiliation(s)
- Yang Zhou
- State
Key Laboratory of NBC Protection for Civilian, Beijing 100084, China
- Institute
of Chemical Materials, China Academy of
Engineering and Physics, Mianyang 621900, China
| | - Zhilin Yang
- Automation
Research Institute of China South Industries Group Corporation, Mianyang 621000, China
| | - Tong Wei
- Institute
of Chemical Materials, China Academy of
Engineering and Physics, Mianyang 621900, China
| | - Lingzhi Gu
- Institute
of Chemical Materials, China Academy of
Engineering and Physics, Mianyang 621900, China
| | - Yongbing Zhu
- State
Key Laboratory of NBC Protection for Civilian, Beijing 100084, China
| |
Collapse
|
6
|
Wang C, Wallace AF, Heraty L, Qi H, Sturchio NC. Alkaline hydrolysis pathway of 2,4-dinitroanisole verified by 18O tracer experiment. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122627. [PMID: 32305747 DOI: 10.1016/j.jhazmat.2020.122627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The environmental fate of insensitive munitions compounds, such as 2,4-dinitroanisole (DNAN), has drawn increasing attention because of their growing use in military activities. One of the main attenuation mechanisms of DNAN degradation in aqueous environments is alkaline hydrolysis. We investigated the pathway for alkaline hydrolysis of DNAN at pH 12 by a combined approach of experiment and theory. An experiment using 18O-labeled water was performed to verify the reaction pathway. Calculated free energies for two putative reaction pathways by density-functional theory optimized at the SMD(Pauling)/M06-2X/6-311++G(2d,2p) level including explicit solvation of DNAN by 10 H2O molecules and one OH- ion gave a prediction in agreement with the experimental result. The verified reaction pathway for alkaline hydrolysis of DNAN is a SN2Ar nucleophilic aromatic substitution with a methoxy leaving group (OCH3) at the C1 site.
Collapse
Affiliation(s)
- Chunlei Wang
- Department of Earth Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Adam F Wallace
- Department of Earth Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Linnea Heraty
- Department of Earth Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Haiping Qi
- Reston Stable Isotope Laboratory, U.S. Geological Survey, Reston, VA, 20192, USA
| | - Neil C Sturchio
- Department of Earth Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
7
|
Zhou Y, Liu X, Jiang W, Shu Y, Xu G. A theoretical insight into the reaction mechanisms of a 2,4,6-trinitrotoluene nitroso metabolite with thiols for toxic effects. Toxicol Res (Camb) 2019; 8:270-276. [PMID: 30997026 PMCID: PMC6430087 DOI: 10.1039/c8tx00326b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/31/2019] [Indexed: 01/08/2023] Open
Abstract
2,4,6-Trinitrotoluene (TNT) is a class C carcinogen as rated by the Environmental Protection Agency. One of the toxicity mechanisms of TNT is the covalent binding of its metabolites to critical proteins. However, knowledge about their molecular reaction mechanisms is scarce. Herein, we have provided density functional theory (DFT) simulation evidences for the reaction mechanisms of the nitroso metabolite of TNT with the sulfhydryl group of model thiols for the first time. The results show that the solvent-mediated proton-transfer mechanism plays a significant role in the entire process. For the formation of semimercaptal, the mechanism is slightly different from the previous one where the thiolate anion attacks the nitroso group. The rearrangement of semimercaptal needs to be triggered by an acid or hydrated ion (H3O+), which is consistent with the previous assumption. The other pathway, the conversion of semimercaptal to hydroxylamine, has to overcome a higher barrier, although it does not need the participation of an acid or a hydrated ion. In addition, the details on transition states, intermediates and free energy surfaces for three reactions are given, which make up for the lack of experimental knowledge. These conclusions can help to deeply understand the toxic effects of TNT and other nitroaromatic explosives.
Collapse
Affiliation(s)
- Yang Zhou
- College of Chemistry and Environmental Engineering , Sichuan University of Science and Engineering , Zigong 643000 , China .
- Institute of Chemical Materials , China Academy of Engineering and Physics , 621900 Mianyang , China
| | - Xiaoqiang Liu
- College of Chemistry and Environmental Engineering , Sichuan University of Science and Engineering , Zigong 643000 , China .
| | - Weidong Jiang
- College of Chemistry and Environmental Engineering , Sichuan University of Science and Engineering , Zigong 643000 , China .
| | - Yuanjie Shu
- College of Chemistry and Environmental Engineering , Sichuan University of Science and Engineering , Zigong 643000 , China .
| | - Guojun Xu
- The 1st Affiliated Hospital of Dalian Medical University , 116000 Dalian , China .
| |
Collapse
|
8
|
Xu L, Li W, Désesquelles P, Van-Oanh NT, Thomas S, Yang J. A Statistical Model and DFT Study of the Fragmentation Mechanisms of Metronidazole by Advanced Oxidation Processes. J Phys Chem A 2019; 123:933-942. [DOI: 10.1021/acs.jpca.8b10554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lejin Xu
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, People’s Republic of China
| | - Wuyang Li
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, People’s Republic of China
| | - Pierre Désesquelles
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, People’s Republic of China
- Centre des Sciences Nucléaires et des Sciences de la Matière (CSNSM), Université Paris-Sud and CNRS-IN2P3, Université Paris-Saclay, Bâtiment 104, 15 rue Clemenceau, F91405 Orsay Cédex, France
| | - Nguyen-Thi Van-Oanh
- Laboratoire de Chimie Physique (LCP), CNRS UMR 8000, Université Paris-Sud, Université Paris-Saclay, F91405 Orsay Cédex, France
| | - Sébastien Thomas
- Centre des Sciences Nucléaires et des Sciences de la Matière (CSNSM), Université Paris-Sud and CNRS-IN2P3, Université Paris-Saclay, Bâtiment 104, 15 rue Clemenceau, F91405 Orsay Cédex, France
- Laboratoire de Chimie Physique (LCP), CNRS UMR 8000, Université Paris-Sud, Université Paris-Saclay, F91405 Orsay Cédex, France
| | - Jun Yang
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, People’s Republic of China
| |
Collapse
|