1
|
Soares IN, Peterson KA, de Souza GLC. Probing Antioxidant-Related Properties for Phenolic Compounds. J Phys Chem A 2024; 128:2727-2736. [PMID: 38538553 DOI: 10.1021/acs.jpca.3c08406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In this work, properties related to antioxidant-potential mechanisms (such as the bond dissociation enthalpy, BDE, for the homolytic cleavage of the O-H bond and ionization energies, IEs) were determined for phenol, pyrocatechol, and gallic acid (GA). Both the protonated and deprotonated forms of GA were investigated. The Feller-Peterson-Dixon (FPD) composite method was employed with a variety of computational approaches, i.e., density functional theory, Möller-Plesset perturbation theory, and coupled-cluster-based methods, in combination with large correlation consistent basis sets with extrapolation to the complete basis set limit and consideration of core electron correlation effects. FPD results were compared to experimental and computational data available in the literature, presenting good agreement. For example, the FPD BDE (298 K) obtained for phenol, which was based on valence-correlated MP2/CBS calculations with contributions from correlating all electrons, was determined to be 87.56 kcal/mol, a value that is 0.42 kcal/mol lower than the result obtained in the most recent experiments, 87.98 ± 0.62. Calibration against coupled-cluster calculations was also carried out for phenol. We expect that the outcomes gathered here may help in establishing a general protocol for computational chemists that are interested in determining antioxidant-related properties for phenolic compounds with considerable accuracy as well as to motivate future IE measurements (particularly for GA) to be accomplished in the near future.
Collapse
Affiliation(s)
- Iuri N Soares
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900, Brazil
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Gabriel L C de Souza
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Buri, São Paulo 18290-000, Brazil
| |
Collapse
|
2
|
Rudrapal M, Rakshit G, Singh RP, Garse S, Khan J, Chakraborty S. Dietary Polyphenols: Review on Chemistry/Sources, Bioavailability/Metabolism, Antioxidant Effects, and Their Role in Disease Management. Antioxidants (Basel) 2024; 13:429. [PMID: 38671877 PMCID: PMC11047380 DOI: 10.3390/antiox13040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols, as secondary metabolites ubiquitous in plant sources, have emerged as pivotal bioactive compounds with far-reaching implications for human health. Plant polyphenols exhibit direct or indirect associations with biomolecules capable of modulating diverse physiological pathways. Due to their inherent abundance and structural diversity, polyphenols have garnered substantial attention from both the scientific and clinical communities. The review begins by providing an in-depth analysis of the chemical intricacies of polyphenols, shedding light on their structural diversity and the implications of such diversity on their biological activities. Subsequently, an exploration of the dietary origins of polyphenols elucidates the natural plant-based sources that contribute to their global availability. The discussion extends to the bioavailability and metabolism of polyphenols within the human body, unraveling the complex journey from ingestion to systemic effects. A central focus of the review is dedicated to unravelling the antioxidant effects of polyphenols, highlighting their role in combating oxidative stress and associated health conditions. The comprehensive analysis encompasses their impact on diverse health concerns such as hypertension, allergies, aging, and chronic diseases like heart stroke and diabetes. Insights into the global beneficial effects of polyphenols further underscore their potential as preventive and therapeutic agents. This review article critically examines the multifaceted aspects of dietary polyphenols, encompassing their chemistry, dietary origins, bioavailability/metabolism dynamics, and profound antioxidant effects. The synthesis of information presented herein aims to provide a valuable resource for researchers, clinicians, and health enthusiasts, fostering a deeper understanding of the intricate relationship between polyphenols and human health.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur 522213, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai 400614, India;
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia;
| | - Soumi Chakraborty
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| |
Collapse
|
3
|
Ikeji CN, Adedara IA, Farombi EO. Dietary myricetin assuages atrazine-mediated hypothalamic-pituitary-testicular axis dysfunction in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15655-15670. [PMID: 36169847 DOI: 10.1007/s11356-022-23033-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Atrazine (ATZ) exposure is associated with reproductive dysfunction in both animals and humans. Myricetin, a flavonoid compound, is well documented for its numerous pharmacological activities. However, the impact of myricetin on the atrazine-mediated dysfunctional hypothalamic-pituitary-testicular axis is not known. This study investigated the role of myricetin on the atrazine-induced alterations in the male reproductive axis in rats orally gavaged with ATZ alone (50 mg/kg) or co-treated with ATZ + myricetin (MYR) at 5, 10, and 20 mg/kg for 30 consecutive days. Myricetin assuaged ATZ-induced reductions in intra-testicular testosterone, serum follicle-stimulating hormone, luteinizing hormone, and testosterone, coupled with decreases in alkaline phosphatase, acid phosphatase, lactate dehydrogenase, and glucose-6-phosphate dehydrogenase activities. Also, MYR treatment improved epididymal sperm count and motility and decreased sperm defects in ATZ-treated rats. Testicular sperm number, daily sperm production, and sperm viability remained unchanged in all treatment groups. Administration of MYR abated ATZ-mediated depletion in antioxidant status, an increase in myeloperoxidase activity, nitric oxide, hydrogen peroxide, malondialdehyde levels, and reactive oxygen and nitrogen species, as well as the histological lesions in the hypothalamus, epididymis, and testes of treated animals. All in all, MYR mitigated atrazine-mediated functional changes in the reproductive axis via anti-inflammatory and antioxidant mechanisms in atrazine-exposed rats. Dietary intake of MYR could be a worthy chemoprotective approach against reproductive dysfunction related to ATZ exposure.
Collapse
Affiliation(s)
- Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
4
|
Zhu Z, Marshall M, Harris R, Collins E, Bowen KH. Photoelectron Spectroscopic and Computational Study of the Deprotonated Gallic Acid and Propyl Gallate Anions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1355-1361. [PMID: 35235324 DOI: 10.1021/jasms.2c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antioxidants play important roles in eliminating reactive oxygen species (ROS), which have been associated with various degenerative diseases, such as cancer, aging, and inflammatory diseases. Gallic acid (GA) and propyl gallate (PG) are well-known antioxidants and have been widely studied in vitro and in vivo. The biological antioxidant abilities of GA and PG are related to the electronic structure of their dehydro-radicals. In this work, we report a combined photoelectron spectroscopic and computational study of the deprotonated gallic acid anion, [GA - H]-, and deprotonated propyl gallate anion, [PG - H]-. Adiabatic electron affinities of the dehydro-gallic acid radical, [GA - H]· and of the dehydro-propyl gallate radical, [PG - H]·, are measured to be 2.90 ± 0.05 eV and 2.85 ± 0.05 eV, respectively, and compared to computational results.
Collapse
Affiliation(s)
- Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mary Marshall
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rachel Harris
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Evan Collins
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Liu T, Peng F, Zhu Y, Cao X, Wang Q, Liu F, Liu L, Xue W. Design, synthesis, biological activity evaluation and mechanism of action of myricetin derivatives containing thioether quinazolinone. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
6
|
Spiegel M. Current Trends in Computational Quantum Chemistry Studies on Antioxidant Radical Scavenging Activity. J Chem Inf Model 2022; 62:2639-2658. [PMID: 35436117 PMCID: PMC9198981 DOI: 10.1021/acs.jcim.2c00104] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The antioxidative
nature of chemicals is now routinely studied
using computational quantum chemistry. Scientists are constantly proposing
new approaches to investigate those methods, and the subject is evolving
at a rapid pace. The goal of this review is to collect, consolidate,
and present current trends in a clear, methodical, and reference-rich
manner. This paper is divided into several sections, each of which
corresponds to a different stage of elaborations: preliminary concerns,
electronic structure analysis, and general reactivity (thermochemistry
and kinetics). The sections are further subdivided based on methodologies
used. Concluding remarks and future perspectives are presented based
on the remaining elements.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
7
|
Zhang Y, Cui L, Lu Y, He J, Hussain H, Xie L, Sun X, Meng Z, Cao G, Qin D, Wang D. Characterization of Silver Nanoparticles Synthesized by Leaves of Lonicera japonica Thunb. Int J Nanomedicine 2022; 17:1647-1657. [PMID: 35418754 PMCID: PMC8995626 DOI: 10.2147/ijn.s356919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background The leaves of L. japonica (LLJ) are widely used as medicine in China. It is rich in caffeoylquinic acids, flavonoids and iridoid glycosides and has strong reducing capacities. Therefore, it can be used as a green material to synthesize silver nanoparticles. Methods LLJ was used as a reducing agent to produce the LLJ-mediated silver nanoparticles (LLJ-AgNPs). The structure and physicochemical properties of LLJ-AgNPs were characterized by ultraviolet spectroscopy (UV-Vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and x-ray powder diffraction (XRD). Antioxidant activity of LLJ-AgNPs was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging. Antibacterial activity was determined by 96 well plates (AGAR) gradient dilution, while the anticancer potential was determined by MTT assay. Results The results showed LLJ-AgNPs had a spherical structure with the maximum UV-Vis absorption at 400 nm. In addition, LLJ-AgNPs exhibited excellent antioxidant properties, where the free radical scavenging rate of LLJ-AgNPs was increased from 39% to 92% at concentrations from 0.25 to 1.0 mg/mL. Moreover, LLJ-AgNPs displayed excellent antibacterial properties against E. coli and Salmonella at room temperature, with minimum inhibitory values of 10-6 and 10-5 g/L, respectively. In addition, the synthetic LLJ-AgNPs exhibited a better inhibition effect in the proliferation of cancer cells (HepG2, MDA-MB -231, and Hela cells). Conclusion The present study provides a green approach to synthesize LLJ-AgNPs. All those findings illustrated that the produced LLJ-AgNPs can be used as an economical and efficient functional material for further applications in food and pharmaceutical fields.
Collapse
Affiliation(s)
- Yu Zhang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People’s Republic of China
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, People’s Republic of China
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, 274000, People’s Republic of China
| | - Li Cui
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, People’s Republic of China
| | - Yizeng Lu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, People’s Republic of China
| | - Jixiang He
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250353, People’s Republic of China
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant BioChemistry, Halle, D-06120, Germany
| | - Lei Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, People’s Republic of China
| | - Xuan Sun
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, People’s Republic of China
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, People’s Republic of China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, People’s Republic of China
| | - Dawei Qin
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People’s Republic of China
| | - Daijie Wang
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, People’s Republic of China
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, 274000, People’s Republic of China
| |
Collapse
|
8
|
Akintemi EO, Govender KK, Singh T. A DFT study of the chemical reactivity properties, spectroscopy and bioactivity scores of bioactive flavonols. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Theoretical investigations on the antioxidant potential of 2,4,5-trihydroxybutyrophenone in different solvents: A DFT approach. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Ordoñez ME, Borges VS, Souza AC, Ferreira LR, Costa FM, Melo FP, Vale JK, Borges RS. Molecular modifications on β-nitro-styrene derivatives increase their antioxidant capacities. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Abstract
In this work, a computational study on the ionization potentials (IPs) of the formaldehyde trimer, (H2CO)3, is presented. Twelve lowest-lying vertical IPs were determined through the use of the coupled-cluster level of theory using correlation consistent basis sets with extrapolation to the complete basis set limit and consideration of core electron correlation effects. Specifically, the equation-of-motion ionization potential coupled-cluster with single and double excitations method with the aug-cc-pVnZ and aug-cc-pCVnZ (n = D and T) basis sets was used. The Feller-Peterson-Dixon (FPD) composite approach was employed to provide accurate IPs, and eight conformations of (H2CO)3 were considered. The FPD IPs determined for (H2CO)3 were found to be systematically lower than those computed for the dimer and monomer of H2CO in the pattern IP(monomer) > IP(dimer) > IP(trimer) for a given IP. In addition, the IPs calculated when considering only the more stable conformation (C0) are in good agreement with those obtained using the eight conformations of the H2CO trimer, and thus, the actual conformation played only a minor role in determining such properties in the present case. By providing first accurate IP results for the H2CO trimer, we hope to motivate future experimental and computational investigations (e.g., studies involving photoionization) that rely on such quantities.
Collapse
Affiliation(s)
- Gabriel L C de Souza
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900, Brazil
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
12
|
Tamafo Fouegue AD, Tedongmo H, Abdoul Ntieche R, Ghogomu JN. DFT insights into the structure, reactivity and radical scavenging activity of cycloartocarpesin. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Aymard Didier Tamafo Fouegue
- Department of Chemistry, Higher Teacher Training College Bertoua The University of Ngaoundéré Bertoua Cameroon
- Research Unit of Noxious Chemistry and Environmental Engineering, Department of Chemistry, Faculty of Science The University of Dschang Dschang Cameroon
| | - Hilaire Tedongmo
- Research Unit of Noxious Chemistry and Environmental Engineering, Department of Chemistry, Faculty of Science The University of Dschang Dschang Cameroon
| | - Rahman Abdoul Ntieche
- Department of Chemistry, Higher Teacher Training College Bertoua The University of Ngaoundéré Bertoua Cameroon
| | - Julius Numbonui Ghogomu
- Research Unit of Noxious Chemistry and Environmental Engineering, Department of Chemistry, Faculty of Science The University of Dschang Dschang Cameroon
- Department of Chemistry, Faculty of Science The University of Bamenda Bamenda Cameroon
| |
Collapse
|
13
|
Theoretical investigations on the antioxidant potential of a non-phenolic compound thymoquinone: a DFT approach. J Mol Model 2021; 27:173. [PMID: 34014420 DOI: 10.1007/s00894-021-04795-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Thymoquinone (TQ) is a natural compound present in black cumin which possesses potent antioxidant activity without having any phenolic hydroxyl group which is responsible for antioxidant activity. In the present study, computational calculation based on density functional theory (DFT) was executed to assess systematically the antioxidant behavior of this compound by considering geometrical characteristics, highest occupied molecular orbital - lowest unoccupied molecular orbital (HOMO-LUMO), and molecular electrostatic potential (MEP) surface. Thermochemical parameters correlated to the leading antioxidant mechanisms such as hydrogen atom transfer (HAT), single electron transfer-proton transfer (SETPT), and sequential proton loss electron transfer (SPLET) were studied in gas and water media. In addition, the changes of thermochemical parameters such as free energy change (∆G) and enthalpy change (∆H) were computed for hydrogen abstraction (HA) from TQ to hydroxyl radical in gas and water phases to investigate its free radical scavenging potency. The low and comparable values of bond dissociation enthalpy (BDE), proton dissociation enthalpy (PDE), ionization potential (IP), proton affinity (PA), and electron transfer enthalpy (ETE) revealed the antioxidant activity. The ∆G and ∆H also indicated apposite thermodynamic evidence in favor of antiradical capability of TQ. The attack of the free radical occurred preferentially at 3CH position of the molecule.
Collapse
|
14
|
Li Z, Ali I, Qiu J, Zhao H, Ma W, Bai A, Wang D, Li J. Eco-Friendly and Facile Synthesis of Antioxidant, Antibacterial and Anticancer Dihydromyricetin-Mediated Silver Nanoparticles. Int J Nanomedicine 2021; 16:481-492. [PMID: 33500618 PMCID: PMC7826068 DOI: 10.2147/ijn.s283677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Background Dihydromyricetin (DMY), a natural flavonoid, has reportedly antibacterial, antioxidant, anticancer and other properties. In the present study, DMY was used as a reducing agent and stabilizer to synthesize silver nanoparticles (AgNPs), and the optimal conditions for its synthesis were studied. The DMY-AgNPs were investigated for their DPPH scavenging properties and their potential against human pathogenic and food-borne bacteria viz. Escherichia coli (E. coli), and Salmonella. In addition, DMY-AgNPs also showed excellent inhibitory effects on cancer Hela, HepG2 and MDA-MB-231 cell lines. Methods The dihydromyricetin-mediated AgNPs (DMY-AgNPs) were characterized by ultraviolet-visible spectrophotometer (UV-Vis spectra), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD). Antioxidant activity of DMY-AgNPs was determined by 1.1-diphenyl-2-picrylhydrazyl (DPPH) scavenging. The antibacterial activity was determined by 96-well plate (AGAR) gradient dilution, while anticancer potential was determined by MTT assay. Results The results showed that the dispersion of AgNPs had the maximum UV-visible absorption at about 410 nm. The synthesized nanoparticles were almost spherical. FTIR was used to identify functional groups that may lead to the transformation of metal ions into nanoparticles. The results showed that the prepared AgNPs were coated with biological molecules in the extraction solution. The biosynthesized DMY-AgNPs exhibited good antioxidant properties, at various concentrations (0.01-0.1mg/mL), the free radical scavenging rate was about 56-92%. Furthermore, DMY-AgNPs possessed good antibacterial properties against Escherichia coli (E. coli), and Salmonella at room temperature. The minimum inhibitory concentrations (MIC) were 10-6 g/L, and 10-4 g/L, respectively. The bioactivity of DMY-mediated AgNPs was studied using MTT assay against Hela, HepG2 and MDA-MB-231 cancer cell lines, and all showed good inhibitory effects. Conclusion The present study provides a green approach for the synthesis of DMY-AgNPs which exhibited stronger antioxidant, antibacterial and anticancer properties compared to the dihydromyricetin. DMY-AgNPs can serve as an economical, efficient, and effective antimicrobial material for its applications in food and pharmaceutical fields.
Collapse
Affiliation(s)
- Zhao Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, People's Republic of China.,College of Life Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Iftikhar Ali
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, People's Republic of China.,Department of Chemistry, Karakoram International University, Gilgit 15100, Pakistan
| | - Jiying Qiu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Huanzhu Zhao
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, People's Republic of China
| | - Wenya Ma
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, People's Republic of China.,College of Life Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Aiying Bai
- Jinan Municipal Center for Disease Control and Prevention, Jinan 250001, People's Republic of China
| | - Daijie Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, People's Republic of China
| | - Jingchao Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, People's Republic of China
| |
Collapse
|
15
|
de Souza GLC, Peterson KA. Benchmarking Antioxidant-Related Properties for Gallic Acid through the Use of DFT, MP2, CCSD, and CCSD(T) Approaches. J Phys Chem A 2021; 125:198-208. [PMID: 33400511 DOI: 10.1021/acs.jpca.0c09116] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We present a benchmark investigation on the O-H bond dissociation enthalpies (BDEs) and ionization potential (IP) for gallic acid (GA), a widely known polyphenolic antioxidant. These properties were determined in the gas-phase and in water through the use of density functional theory (DFT), second-order Møller-Plesset perturbation theory (MP2), coupled-cluster with single and double excitations (CCSD), and coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)). The 6-311++G(df,p), cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis sets were used. Regarding DFT functionals, the M06-2X provided the best agreement for the BDEs when compared to the corresponding CCSD(T)/aug-cc-pVTZ results; M06-2X was also found to be the most suitable for probing the IP for the protonated forms of GA while LC-ωPBE was the most reliable in the case of deprotonated GA. Given that these properties represent important descriptors for examining mechanisms related to the antioxidant potential of a given polyphenol, we hope that the present work can serve as a guide for computational chemists venturing in the field.
Collapse
Affiliation(s)
- Gabriel L C de Souza
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900, Brazil.,Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
16
|
Li Z, Ma W, Ali I, Zhao H, Wang D, Qiu J. Green and Facile Synthesis and Antioxidant and Antibacterial Evaluation of Dietary Myricetin-Mediated Silver Nanoparticles. ACS OMEGA 2020; 5:32632-32640. [PMID: 33376900 PMCID: PMC7758972 DOI: 10.1021/acsomega.0c05002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 05/02/2023]
Abstract
Myricetin (MY) is a dietary flavonoid which exhibits a wide spectrum of biological properties, viz., antibacterial, antioxidant, anticancer, and so forth. The lower solubility in aqueous medium and hence lesser bioavailability of MY limits the use of such dietary flavonoids in further in vivo research. To overcome bioavailability limitations, a number of drug-delivery systems are being investigated. Herein, MY-mediated silver nanoparticles (MY-AgNPs) were synthesized by a green approach to improve the therapeutic efficacy of MY. MY-AgNPs were characterized by ultraviolet-visible spectroscopy (UV-Vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray powder diffraction (XRD). The results showed that the dispersion of AgNPs had the maximum UV-vis absorption at about 410 nm. The synthesized nanoparticles were almost spherical. MY-AgNPs were further investigated against human pathogenic bacteria, and their antioxidant potential was also determined. The free radical scavenging rate was about 60-87%. MY-AgNPs had good antibacterial activity against Escherichia coli and Salmonella at room temperature with minimum inhibitory concentrations of 10-4 and 10-5 g/L, respectively.
Collapse
Affiliation(s)
- Zhao Li
- School
of Pharmaceutical Sciences and Key Laboratory for Applied Technology
of Sophisticated Analytical Instruments of Shandong Province, Shandong
Analysis and Test Center, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Wenya Ma
- School
of Pharmaceutical Sciences and Key Laboratory for Applied Technology
of Sophisticated Analytical Instruments of Shandong Province, Shandong
Analysis and Test Center, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
- College
of Life Science, Shandong Normal University, Jinan 250014, China
| | - Iftikhar Ali
- School
of Pharmaceutical Sciences and Key Laboratory for Applied Technology
of Sophisticated Analytical Instruments of Shandong Province, Shandong
Analysis and Test Center, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
- Department
of Chemistry, Karakoram International University, Gilgit 15100, Pakistan
| | - Huanzhu Zhao
- School
of Pharmaceutical Sciences and Key Laboratory for Applied Technology
of Sophisticated Analytical Instruments of Shandong Province, Shandong
Analysis and Test Center, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Daijie Wang
- School
of Pharmaceutical Sciences and Key Laboratory for Applied Technology
of Sophisticated Analytical Instruments of Shandong Province, Shandong
Analysis and Test Center, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Jiying Qiu
- Institute
of Agro-Food Science and Technology, Shandong
Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
17
|
Kabanda MM, Gbashi S, Madala NE. Proportional coexistence of okanin chalcone glycoside and okanin flavanone glycoside in Bidens pilosa leaves and theoretical investigation on the antioxidant properties of their aglycones. Free Radic Res 2020; 55:53-70. [PMID: 33267705 DOI: 10.1080/10715762.2020.1859107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bidens pilosa plant has been shown to produce okanin flavanone glycoside and its chalcone derivative. In most other plants, due to chalcone isomerase enzyme, the flavanone tends to exist in higher proportions than their chalcone precursors. Herein we have utilized liquid chromatography-mass spectrometry approach and shown that within the leaves of Bidens pilosa plant the two okanin glycosides exist in unusual equal proportional distribution, which indicates that Bidens pilosa plant is an alternative rich source of these highly sought-after antioxidant molecules. The aglycone okanin chalcone (ONC) and okanin flavanone (ONF) have experimentally been shown to exhibit antioxidant activity. However, experimental findings have not conclusively determined which of the two compounds is a more potent antiradical than the other. Herein, the density functional theory (DFT) method is utilized to establish, from structural and thermodynamic energetic considerations, the preferred antioxidant molecule between the two aglycone okanins. A theoretical study on the antioxidant properties of ONC and ONF has been performed by considering their radical scavenging and metal cation (Mn+, where M = Cu(II) or Fe (III)) chelation ability. The study has been performed using B3LYP/6-31 + G(d,p) method. In the case of the metal chelation mechanism, the LANL2DZ pseudo-potential was selected to describe the selected Mn+ cations. The results of the study suggest that ONC is a better radical scavenger than ONF because of the extended electron delocalization on its neutral radical, which is due to the presence of conjugation within the ONC neutral radical after hydrogen atom abstraction. In the metal chelation mechanism, it is noted that the binding energies depend on the media, the nature of the ligand and the cation and the cation coordination site on the ligand. The charge and the spin density on Mn+ decrease on coordination to the ligand. The ability of the ligands to reduce Mn+ cations, coupled with the strong Mn+ binding properties, has significant implication on the antioxidant ability of both okanins. However, since ONC⋅⋅⋅M+n interaction results in higher binding energy than ONF⋅⋅⋅M+n interaction, the implication is that ONC is a preferred free metal ion chelator than ONF.
Collapse
Affiliation(s)
- Mwadham M Kabanda
- Department of Chemistry, University of Venda, Thohoyandou, South Africa
| | - Sefater Gbashi
- Department of Biotechnology and Food Technology, University of Johannesburg, Auckland Park, South Africa
| | | |
Collapse
|
18
|
Photoinduced degradation of indigo carmine: insights from a computational investigation. J Mol Model 2020; 26:309. [PMID: 33084954 DOI: 10.1007/s00894-020-04567-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/08/2020] [Indexed: 12/29/2022]
Abstract
In this work, we present a computational investigation on the photoexcitation of indigo carmine (IC). Physical insights regarding IC photoexcitation and photolysis were obtained from a fundamental perspective through quantum chemistry computations. Density functional theory (DFT) was used to investigate the ground state while its time-dependent formalism (TD-DFT) was used for probing excited state properties, such as vertical excitation energies, generalized oscillator strengths (GOS), and structures. All the computations were undertaken using two different approaches: M06-2X/6-311+G(d,p) and CAM-B3LYP/6-311+G(d,p), in water. Results determined using both methods are in systematic agreement. For instance, the first singlet excited state was found at 2.28 eV (with GOS = 0.4730) and 2.19 eV (GOS = 0.4695) at the TD-DFT/CAM-B3LYP/6-311+G(d,p) and TD-DFT/M06-2X/6-311+G(d,p) levels of theory, respectively. Excellent agreement was observed between the computed and the corresponding experimental UV-Vis spectra. Moreover, results suggest IC undergoes photodecomposition through excited state chemical reaction rather than via a direct photolysis path. To the best of our knowledge, this work is the first to tackle the photoexcitation, and its potential connections to photodegradation, of IC from a fundamental chemical perspective, being presented with expectations to motivate further studies.
Collapse
|
19
|
Probing structural properties and antioxidant activity mechanisms for eleocarpanthraquinone. J Mol Model 2020; 26:233. [DOI: 10.1007/s00894-020-04469-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
|
20
|
de Souza GLC, Peterson KA. Probing the ionization potentials of the formaldehyde dimer. J Chem Phys 2020; 152:194305. [PMID: 33687222 DOI: 10.1063/5.0009658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this work, we present a computational investigation on the ionization potentials (IPs) of the formaldehyde dimer, (H2CO)2. Twelve lowest lying IPs (corresponding to the entire valence orbitals) for both C2h and Cs symmetry conformers have been computed at the coupled cluster level of theory using large correlation consistent basis sets with extrapolation to the complete basis set limit and consideration of core electron correlation effects. Specifically, the equation-of-motion ionization potential coupled-cluster with single and double (EOMIP-CCSD) excitations method with the aug-cc-pVXZ and aug-cc-pCVXZ (X = T, Q, and 5) basis sets combined with the Feller-Peterson-Dixon approach was employed, as well as CCSD with perturbative triples [CCSD(T)] with the aug-cc-pVTZ basis sets. In general, excellent agreement was observed from the comparison between the results obtained through the use of these approaches. In addition, the IPs for the formaldehyde monomer were also obtained using such methodologies and the results compared with existing experimental data; excellent agreement was also observed in this case. To the best of our knowledge, this work represents the first of its kind to determine the IPs for all these systems using a high level theory approach and is presented to motivate experimental investigations, e.g., studies involving photoionization, particularly for the formaldehyde dimer. The equilibrium binding energy of the C2h dimer is calculated in this work at the CCSD(T)/aug-cc-pVTZ level of theory to be -4.71 kcal/mol. At this same level of theory, the equilibrium isomerization energy between C2h and Cs conformers is 0.76 kcal/mol (Cs conformer being more stable).
Collapse
Affiliation(s)
- Gabriel L C de Souza
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900, Brazil
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
21
|
Kunjiappan S, Govindaraj S, Parasuraman P, Sankaranarayanan M, Arunachalam S, Palanisamy P, Mohan UP, Babkiewicz E, Maszczyk P, Vellaisamy S, Panneerselvam T. Design, in silico modelling and functionality theory of folate-receptor-targeted myricetin-loaded bovine serum albumin nanoparticle formulation for cancer treatment. NANOTECHNOLOGY 2020; 31:155102. [PMID: 31775133 DOI: 10.1088/1361-6528/ab5c56] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Targeted drug delivery systems are a promising field of research. Nano-engineered material-mediated drug delivery possesses remarkable potential for the treatment of various malignancies. Here, folic acid (FA)-conjugated bovine serum albumin (BSA) nanoparticles (NPs) were used to encapsulate myricetin (Myr). Subsequently, the delivery of Myr via naturally overexpressed folate receptor (FR) to FR-positive breast cancer cells was studied. Myr-loaded BSA NPs were assembled by modified desolvation cross-linking technique. An FA-conjugated carrier, N-hydroxysuccinimide (NHS)-FA ester, was successfully synthesized. Its functional and structural characteristics were confirmed by ultraviolet, Fourier-transform infrared, and proton nuclear magnetic resonance spectroscopy. Biocompatible FA-conjugated, Myr-loaded BSA NPs (FA-Myr-BSA NPs) were successfully formulated using a carbonate/bicarbonate buffer. Their morphology, size, shape, physiological stability, and drug release kinetics were studied. Molecular docking studies revealed that FA-Myr-BSA NPs readily bound non-covalently to folate receptors and facilitated active drug endocytosis. FA-Myr-BSA NPs could trigger fast release of Myr in an acidic medium (pH 5.4), and showed high biocompatibility in a physiological medium. FA-Myr-BSA NPs effectively decreased the viability of MCF-7 cells after 24 h with 72.45 μg ml-1 IC50 value. In addition, FA-Myr-BSA NPs enhanced the uptake of Myr in MCF-7 cells. After incubation, a typical apoptotic morphology of condensed nuclei and distorted membrane bodies was observed. The NPs also targeted mitochondria of MCF-7 cells, significantly increasing reactive oxygen species release and contributing to the loss of mitochondrial membrane integrity. The observed results confirm that the newly developed FA-Myr-BSA NPs can serve as a potential carrier for Myr to increase the anticancer activity of this chemotherapeutic.
Collapse
Affiliation(s)
- Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamilnadu, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Filho AHDS, de Souza GLC. Examining the degradation of environmentally-daunting per- and poly-fluoroalkyl substances from a fundamental chemical perspective. Phys Chem Chem Phys 2020; 22:17659-17667. [DOI: 10.1039/d0cp02445g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, ground and excited-state properties were used as descriptors for probing mechanisms as well as to assess potential alternatives for tackling the elimination of per- and poly-fluoroalkyl substances (PFAS).
Collapse
Affiliation(s)
| | - Gabriel L. C. de Souza
- Departamento de Química
- Universidade Federal de Mato Grosso
- Cuiabá
- Brazil
- Department of Chemistry
| |
Collapse
|
23
|
Motta RM, Santos FB, da Silva SC, de Souza GL. Examining NO releasing prospects from a fundamental chemical perspective. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Rehman MU, Rather IA. Myricetin Abrogates Cisplatin-Induced Oxidative Stress, Inflammatory Response, and Goblet Cell Disintegration in Colon of Wistar Rats. PLANTS 2019; 9:plants9010028. [PMID: 31878169 PMCID: PMC7020155 DOI: 10.3390/plants9010028] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
Cisplatin [cis-diamminedichloroplatinum II] is an extensively prescribed drug in cancer chemotherapy; it is also useful for the treatment of diverse types of malignancies. Conversely, cisplatin is associated with a range of side effects such as nephrotoxicity, hepatotoxicity, gastrointestinal toxicity, and so on. Myricetin (3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-4chromenone) is a very common natural flavonoid found in fruits, tea, and plants. It has been found to have high-value pharmacological properties and strong health benefits. To examine the role of myricetin in colon toxicity induced by cisplatin, we conducted a concurrent prophylactic study in experimental animals that were treated orally with myricetin for 14 days at two doses—25 and 50 mg/kg of body weight. On the 14th day, a single intraperitoneal injection of cisplatin (7.5 mg/kg body weight) was administered in all groups except control. The effects of myricetin in cisplatin-induced toxicity in the colon were assessed in terms of antioxidant status, phase-II detoxification enzymes, the level of inflammatory markers, and goblet cell disintegration. Myricetin was found to restore the level of all the antioxidant enzymes analyzed in the study. In addition, the compound ameliorated cisplatin-induced lipid peroxidation, increase in xanthine oxidase activity, and phase-II detoxifying enzyme activity. Myricetin also attenuated deteriorative effects induced by cisplatin by regulating the level of molecular markers of inflammation (NF-κB, Nrf-2, IL-6, and TNF-α), restoring Nrf-2 levels, and controlling goblet cell disintegration. The current study reinforces the conclusion that myricetin exerts protection in colon toxicity via up-regulation of inflammatory markers, improving anti-oxidant status, and protecting tissue damage.
Collapse
Affiliation(s)
- Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
- Division of Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKAUST-Kashmir, Alustang, Srinagar, J&K 190006, India
- Correspondence: (M.U.R.); (I.A.R.)
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU) P.O. Box-80141, Jeddah 21589, Saudi Arabia
- Correspondence: (M.U.R.); (I.A.R.)
| |
Collapse
|
25
|
Isoflavones and Isoflavone Glycosides: Structural-Electronic Properties and Antioxidant Relations—A Case of DFT Study. J CHEM-NY 2019. [DOI: 10.1155/2019/4360175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Isoflavonoids and isoflavonoid glycosides have drawn much attention because of their antioxidant radical-scavenging capacity. Based on computational methods, we now present the antioxidant potential results of genistein (1), biochanin A (2), ambocin (3), and tectorigenin 7-O-[β-D-apiofuranosyl-(1-6)-β-D-glucopyranoside] (4). The optimized structures of the neutral and radical forms have been determined by the DFT-B3LYP method with the 6-311G(d) basis set. From the findings and thermodynamic point of view, the ring B system of isoflavones is considered as an active center in facilitating antioxidant reactions. Antioxidant activities are mostly driven by O-H bond dissociation enthalpy (BDE) following hydrogen atom transfer (HAT) mechanism. Antioxidant ability can be arranged in the following order: compounds (4) > (3) > (2) > (1). Of comprehensive structural analysis, flavonoids with 4′-methylation and 6-methoxylation, especially 7-glycosylation would claim responsibility for antioxidant enhancement.
Collapse
|
26
|
Otukile KP, Kabanda MM. A DFT mechanistic and kinetic study on the reaction of phloroglucinol with •OH in different media: Hydrogen atom transfer versus oxidation. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2019. [DOI: 10.1142/s0219633619500172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A theoretical study on the reaction of phloroglucinol with •OH has been performed with the aim of elucidating the geometric, energetic and kinetic properties of the reaction as well as identifying the preferred reaction pathway. Three reaction mechanisms have been considered, namely, direct hydrogen atom abstraction, addition–elimination mechanism in the absence and in the presence of a base catalyst and oxidation mechanism in the absence and in the presence of O2. The study has been performed using the DFT/M06[Formula: see text]2X, DFT/BHHLYP and DFT/MPW1K methods in conjunction with either the 6-31++G(d,p) or the 6-311++G(3df,2p) basis set. The energetic parameters are influenced by the type of function utilized and the media in which the calculation is done. The direct hydrogen abstraction mechanism provides the smallest branching ratio with respect to the •OH addition mechanisms. The PG + •OH reaction under atmospheric conditions saturated with O2 would predominantly form tetrahydroxybenzene; the predominant product within the biological system would largely depend on physiological conditions; under pH [Formula: see text] 7 and with oxygen dissolved within the biological system, the preferred product would be tetrahydroxybenzene; however, if the reaction takes place in some part of the biological system where the pH [Formula: see text] 7, the preferred product would be the phenoxyl radical.
Collapse
Affiliation(s)
- Kgalaletso P. Otukile
- Department of Chemistry, Faculty of Natural and Agriculture Sciences, North–West University, Private Bag X2046, Mmabatho 2735, South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agriculture Sciences, North–West University, Private Bag X 2046, Mmabatho 2735, South Africa
| | - Mwadham M. Kabanda
- Department of Chemistry, Faculty of Natural and Agriculture Sciences, North–West University, Private Bag X2046, Mmabatho 2735, South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agriculture Sciences, North–West University, Private Bag X 2046, Mmabatho 2735, South Africa
| |
Collapse
|
27
|
Maciel EN, Soares IN, da Silva SC, de Souza GLC. A computational study on the reaction between fisetin and 2,2-diphenyl-1-picrylhydrazyl (DPPH). J Mol Model 2019; 25:103. [DOI: 10.1007/s00894-019-3969-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/08/2019] [Indexed: 01/29/2023]
|
28
|
Evaluation of the antioxidant potential of myricetin 3-O-α-L-rhamnopyranoside and myricetin 4′-O-α-L-rhamnopyranoside through a computational study. J Mol Model 2019; 25:89. [DOI: 10.1007/s00894-019-3959-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/07/2019] [Indexed: 12/11/2022]
|
29
|
Maciel EN, Almeida SKC, da Silva SC, de Souza GLC. Examining the reaction between antioxidant compounds and 2,2-diphenyl-1-picrylhydrazyl (DPPH) through a computational investigation. J Mol Model 2018; 24:218. [DOI: 10.1007/s00894-018-3745-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
|