1
|
Hassan AU, Sumrra SH, Mustafa G, Noreen S, Ali A, Sara S, Imran M. Enhancing NLO performance by utilizing tyrian purple dye as donor moiety in organic DSSCs with end capped acceptors: A theoretical study. J Mol Graph Model 2023; 124:108538. [PMID: 37327646 DOI: 10.1016/j.jmgm.2023.108538] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
A series of new organic dyes (T1-T6) with nonfullerene acceptors have been theoretically designed around the chemical structure of tyrian purple (T) natural dye. For their ground state energy parameters, all the molecular geometries of those dyes were optimized by density functional theory (DFT) at its Becke, 3-parameter, Lee-Yang-Parr (B3LYP) level of theory with 6-31G+(d,p) basis sets. When benchmarking against several long range and range separated levels of theory, the Coulomb attenuated B3LYP (CAM-B3LYP) produced most accurate absorption maxima (λmax) value to that of T so it was further employed for further Time dependent DFT (TD-DFT) calculations. Frontier molecular orbitals (FMOs) with natural bond orbital (NBO) studies were used to study their intra molecular charge transfer (ICT). All of the dyes had their energy gaps (Eg) values between their FMOs to range around 0.96-3.39 eV, whereas the starting reference dye had an Eg of 1.30 eV. Their ionization potential (IP) values were ranged to be 3.07-7.25 eV which indicated their nature to loss electrons. The λ max in chloroform was marginally red-shifted with a value 600-625 from T (580 nm). The dye T6 showed its highest linear polarizability (<α>), and first and second order hyperpolarizabilities (β and γ). The synthetic experts can find the present research to design finest NLO materials for current and future uses.
Collapse
Affiliation(s)
- Abrar U Hassan
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan.
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan.
| | - Ghulam Mustafa
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Sadaf Noreen
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Asad Ali
- Department of Chemical Engineering, University of Gujrat, Gujrat 50700, Pakistan
| | - Syeda Sara
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, P. O. Box 9004, Saudi Arabia; Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| |
Collapse
|
2
|
Hassan AU, Sumrra SH, Mustafa G, Nazar MF, Zafar MN. Efficient and tunable enhancement of NLO performance for indaceno-based donor moiety in A-π-D-π-D-π-A type first DSSC design by end-capped acceptors. J Mol Model 2022; 29:4. [PMID: 36481993 DOI: 10.1007/s00894-022-05402-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The organic dyes with non-fullerene acceptors (NFAs) have aided in the creation of competitive organic solar cells (OSCs) with long-term sustainability. A series of NFA dyes (IDIC-R1-IDIC-R9) have been designed by varying the end-capped fluorinated moieties (PD1-PD6) at indaceno (IDIC) core. METHODS All the calculations were performed by density functional theory (DFT) and time-dependent DFT (TD-DFT)-based approaches. All the geometries were optimized at B3LYP/6-31G + (d,p) of DFT level at their ground state energies. Out of several density functionals, the CAM-B3LYP with 6-31G + (d,p) basis sets was selected after a benchmark study to carry out further calculations. All the dyes had their bandgaps in 0.11-3.12 eV while their starting reference dye had a bandgap value of 2.01 eV. RESULTS Their ionization potential (IP) implied that these dyes have strong tendency to lose electrons. The λmax of the dyes was slightly redshifted from the IDIC (476 nm) and IDIC-R (479 nm) when changing solvent polarity from methanol to DCM and then chloroforms. The natural bond orbital (NBO) analysis showed the (S63)LP → (C61-C62)π* with highest stabilization energy. Their electron injection analysis showed that these dyes can be a good anode material against the aluminum and gold electrodes. The intramolecular charge transfer (ICT) process and stability of the dyes were investigated using frontier molecular orbital (FMO) and natural bond orbital (NBO) analysis. CONCLUSION Among all dyes, IDIC-R8 has the highest linear polarizability and second-order hyperpolarizability (βtotal). All the dyes demonstrated promising non-linear optical (NLO) properties due to their low charge transfer barriers. Scientists would be able to exploit these properties to identify the best NLO materials for existing applications.
Collapse
Affiliation(s)
- Abrar U Hassan
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan.
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan.
| | - Ghulam Mustafa
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Muhammad F Nazar
- Department of Chemistry, Division of Science and Technology, University of Education, Multan Campus, Lahore, 60700, Pakistan
| | - Muhammad N Zafar
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| |
Collapse
|
3
|
Ali U, Abbas F. An extension of electron acceptor sites around Thiazolothiazole unit for evaluation of large power conversion efficiency: A theoretical insight. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121610. [PMID: 35841860 DOI: 10.1016/j.saa.2022.121610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Small organic solar cells containing thiazolothiazole unit as an electron acceptor for solution processed bulk heterojunction (BHJ) small donor-acceptor-donor (D-A-D) type materials have been designed and studied theoretically with state-of-the-art density functional theory and time-dependent density functional theory (TD-DFT) for reliable estimation of their excited state and charge transfer photophysical characteristics for estimating their power conversion efficiencies. The suggested possible synthetic routes with complete reaction information have been also provided for synthesis. The electron acceptor sites around the thiazolothiazole unit have been enlarged by introducing different strong electron withdrawing groups and checked their effects on the voltages (VOC) and fill factor (FF) which are the two main parameters directly influences on power conversion efficiencies. Out of five theoretically studied molecules, the experimental reported data of TT-TTPA (Thiazolothiazole-thiaophene triphenyl amine) has been compared with four designed molecules and concluded that extension of acceptor sites significantly contributed towards the better charge transport properties of electron and hole.
Collapse
Affiliation(s)
- Usman Ali
- Beijing National Laboratories for Molecular Sciences, Key Laboratories of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Science, Beijing 100049, PR China; Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Faheem Abbas
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan; Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
4
|
End-group Modification of terminal acceptors on benzothiadiazole-based BT2F-IC4F molecule to establish efficient organic solar cells. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Waqas M, Iqbal J, Mehmood RF, Akram SJ, Shawky AM, Raheel M, Rashid EU, Khera RA. Impact of end-capped modification of MO-IDT based non-fullerene small molecule acceptors to improve the photovoltaic properties of organic solar cells. J Mol Graph Model 2022; 116:108255. [PMID: 35779337 DOI: 10.1016/j.jmgm.2022.108255] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022]
Abstract
Density functional theory, along with its time dependent computational approach were employed in order to fine tune the photovoltaic attributes along with the efficiency of the MO-IDIC-2F molecule. Thus, five new molecules were designed by substitution of the different notable acceptor fragments in the MO-IDIC-2F molecule, along with the addition of the "[1, 2, 5] thiadiazolo[3,4-d] pyridazine" spacer moieties between donor core and newly substituted acceptor groups. In this research work, various photovoltaic properties, which could affect the efficiency of an organic chromophores, such as bandgap, oscillator strength, dipole moment, binding energy, light-harvesting efficiency, etc. were studied. All the newly proposed molecules demonstrated significantly improved outcomes in comparison to that of the reference molecule, in their absorption spectrum, excitation, as well as binding energy values, etc. In order to confirm the results of optoelectronic properties, density of states, transition density matrix, and electrostatic potential analyses of molecules were also performed, which supported our computational findings. All of the results confirmed the high potential of all the newly proposed molecules for the development of improved OSCs.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Rana Farhat Mehmood
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, 54770, Pakistan.
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Muhammad Raheel
- Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, 87300, Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
6
|
Ali U, Etabti H, Muhammad Rizwan Ahmad H, Uz Zafar S. The conformational control of small D-A-D organic solar cells for large power conversion efficiency: A deep quantum chemistry analysis. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Aslam MR, Khera RA, El-Badry YA, Rafiq M, Naveed A, Shehzad MT, Iqbal J. Tuning of diphenylamine subphthalocyanine based small molecules with efficient photovoltaic parameters for organic solar cells. J Mol Graph Model 2022; 112:108146. [DOI: 10.1016/j.jmgm.2022.108146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
|
8
|
An optoelectronic study to design better benzodithiophene (BDT) donor unit based non-fullerene organic solar cells (OSCs): the DFT approaches. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Abbas F, Ali U, Muhammad Rizwan Ahmad H, Tallat A, Shehzad A, Zeb Z, Hussain I, Saeed A, Tariq M. Role of Iodo-Substituted Subphthalocyanine (Subpcs) π-conjugated aromatic N-fused di-Iminoisonidole units on the performance of non-fullerene small organic solar cells. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Molecular designing of tetra-aryl-p-benzoquinones derivatives toward strong optical properties. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01834-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Morajkar PP, Jones LA, George S. Naphthalene diimides: perspectives and promise. Chem Soc Rev 2021; 50:9845-9998. [PMID: 34308940 DOI: 10.1039/d0cs00239a] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.
Collapse
Affiliation(s)
- Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Mohammad Al Kobaisi
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Lathe A Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Subi George
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur PO, Bangalore-560064, India
| |
Collapse
|
12
|
Tuning the absorption and optoelectronic properties of naphthalene diimide based solar cells with non-fullerene acceptors. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01671-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Iftikhar T, Ali U, Shoaib M. Theoretical study of α, β unsaturated carbonyl thiophene derivatives to investigate optoelectronic properties toward organic photovoltaics. J Mol Model 2020; 26:342. [PMID: 33201315 DOI: 10.1007/s00894-020-04597-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Herein theoretical study, we designed sixteen conjugated arylated α, β unsaturated carbonyl thiophene based compounds by using density functional theory (DFT) and time-dependent (TD) density functional theory at modified Perdue Wang density functional MPW1PW91 functional with 6-31G (d, p) basis set. Ground and excited state geometries, electronic and photophysical characteristics of designed molecules are evaluated by assuming the electron-donating and electron-withdrawing effects of the substituents that are attached to these newly designed molecules. Furthermore, calculation of vibrational spectra, time-dependent effect, isotopic substitution effect and force constant along with thermodynamic quantities are also carried out by using MOPAC (Molecular Orbital Package) with strong implementation of semi empirical Hamiltonians. The results reveal that our designed molecules can be a good candidates for electroluminescent and optoelectronic devices for further fabrication of solar cell devices.
Collapse
Affiliation(s)
- Tayyaba Iftikhar
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan.,Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei, Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Usman Ali
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan. .,Beijing National Laboratories for Molecular Sciences, Key Laboratories of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
| | - Muhammad Shoaib
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| |
Collapse
|
14
|
Bilal Ahmed Siddique M, Hussain R, Ali Siddique S, Yasir Mehboob M, Irshad Z, Iqbal J, Adnan M. Designing Triphenylamine‐Configured Donor Materials with Promising Photovoltaic Properties for Highly Efficient Organic Solar Cells. ChemistrySelect 2020. [DOI: 10.1002/slct.202001989] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Riaz Hussain
- Department of Chemistry University of Okara Okara 56300 Pakistan
| | | | | | - Zobia Irshad
- Graduate School, Department of Chemistry Chosun University Gwangju 501-759 R. O. Korea
| | - Javed Iqbal
- Department of Chemistry University of Agriculture 38000 Faisalabad Pakistan
| | - Muhammad Adnan
- Graduate School, Department of Chemistry Chosun University Gwangju 501-759 R. O. Korea
| |
Collapse
|
15
|
Designing indenothiophene-based acceptor materials with efficient photovoltaic parameters for fullerene-free organic solar cells. J Mol Model 2020; 26:137. [PMID: 32405764 DOI: 10.1007/s00894-020-04386-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Non-fullerene small molecular acceptors (NFSMAs) exhibit promising photovoltaic performance which promoted the rapid progress of organic solar cells (OSCs). In this study, an attempt is done to explore indenothiophene-based high-performance small molecular electron acceptors for organic solar cells. We have designed five acceptor molecules (M1-M5) with strong donor moiety indenothiophene linked to five different end-capped group acceptor moieties: diflouro-2-methylene-3-oxo-2,3-dihydroindene-1-ylidene)malononitrile (A1), 1-(dicyanomethylene)-2-methylene-3-oxo-2,3-dihydro-1H-indene-5,6-dicarbonitrile (A2), methyl-6-cyano-3-(dicyanomethylene)-2-methylene-1-oxo-2,3-dihydro-1H-indene-5-carboylate (A3), 2-(6-cyano-5-fluoro-2-methylene-3-oxo-2,3 dihydro-1H-indene-1-ylidene)malononitrile (A4), and (Z)-methyl 3-(benzo [c][1,2,5]thiadiazol-4-yl)-2-cyanoacrylate (A5) respectively. The structure-property relationship was studied and effects of structural modification on the optoelectronic properties of these acceptors (M1-M5) were determined systematically by comparing it with reference molecule R, which is recently reported as excellent non-fullerene-based small acceptor molecule. Among all designed molecules, M5 is proven as a suitable candidate for organic solar cell applications due to better photovoltaic properties including narrow HOMO-LUMO energy gap (2.11 eV), smallest electron mobility (λe = 0.0038 eV), highest λmax values (702.82 nm in gas) and (663.09 nm in chloroform solvent) and highest open-circuit voltage (Voc = 1.49 V) with respect to HOMOPTB7-Th-LUMOacceptor. Our results indicate that introducing more end-capped electron-accepting units is a simple and effective alternative strategy for the design of promising NFSMAs. This theoretical framework also proves that the conceptualized NFSMAs are superior and thus are recommended for the future construction of high-performance organic solar cell devices. Graphical abstract.
Collapse
|
16
|
Ali U, Javed A, Ramzan H, Shoaib M, Raza A, Khalil MT, Cheng SB, Iqbal J. Molecular designing of naphthalene diimide based fullerene-free small organic solar cell - Acceptors with high photovoltaic performance by density functional theory. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117685. [PMID: 31748156 DOI: 10.1016/j.saa.2019.117685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/06/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
With the help of computational chemistry tools, three non-fullerene acceptors, which are 2-methylene-malononitrile (M-1), 2-(3-methyl-5-methylene-2-thioxothiazolidin-4-ylidene) malononitrile (M-2) and 1-methyl-5-methylene-2,6-dioxo-1,2,5,6-tetrahydropyridine-3-carbonitrile (M-3), are designed with naphthalene diimide (NDI) central unit. Their different photovoltaic and optoelectronic properties like absorption spectrum, electrons density, solubility strength, reorganization energies, % ETC from donor to acceptor part, excitation energies, oscillating strength, morphology and crystallinity of device for constructing the thin film bulk hetro junction devices were computed at the WB97XD/6-31 G (d, p) level of density functional theory (DFT). Expected open circuit voltages of designed molecules are high as 4.05 eV to 4.49 eV, which are significantly larger than that of the previously reported 3-methyl-5-methylene-2-thioxothiazolidin-4-one (R) with the value of 3.60 eV at the zero current level. Charge carrier mobilities of designed molecules are high due to having low re-organization energies varying from 0.0163 eV to 0.0280 eV for electron and 0.0160 eV to 0.0190 eV for hole, strong absorption properties between the 420 nm to 550 nm in chloroform and 400 nm to 540 nm in gas phase conditions, respectively.
Collapse
Affiliation(s)
- Usman Ali
- Beijing National Laboratories for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, People's Republic of China; University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Beijing 100190, People's Republic of China; Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Ayesha Javed
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Hina Ramzan
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Shoaib
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ali Raza
- Department of Physics, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Tahir Khalil
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Javed Iqbal
- Punjab Bio-Energy Institute, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
17
|
Designing indaceno thiophene–based three new molecules containing non-fullerene acceptors as strong electron withdrawing groups with DFT approaches. J Mol Model 2019; 25:311. [DOI: 10.1007/s00894-019-4198-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/28/2019] [Indexed: 10/26/2022]
|