1
|
Soroushmanesh M, Dinari M, Farrokhpour H. Comprehensive Computational Investigation of the Porphyrin-Based COF as a Nanocarrier for Delivering Anti-Cancer Drugs: A Combined MD Simulation and DFT Calculation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19073-19085. [PMID: 39189806 DOI: 10.1021/acs.langmuir.4c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
As nanomaterials have gained prominence in drug delivery technology, exploring their feasibility through computational methods is beneficial before practical tests. In this study, we aim to evaluate the capability of the porphyrin-based covalent organic framework COF-366 as a nanocarrier for two anticancer drugs, irinotecan (IRI) and doxorubicin (DOX). The optimal binding conformation of the drug molecules on the COF surface was predicted by using molecular docking. Subsequently, molecular dynamic simulation (MD) was performed to assess the adsorption mechanism of drug molecules on the COF in the aqueous environment. The free energy of adsorption for DOX and IRI was estimated to be -20.07 and -23.89 kcal/mol, respectively. The adsorption of both drugs on the COF surface is mainly influenced by the π-π interaction. Furthermore, density functional theory (DFT) calculation, natural bond orbital (NBO), and quantum theory of atoms in molecules (QTAIM) analyses were employed to investigate the structural stability of Drug@COF complexes and gain a detailed understanding of the interaction between them at the molecular level. Based on DFT results, it was found that in addition to π-π interaction, the bis-piperidine-phenylene interaction affects the adsorption of IRI on the COF surface. Moreover, the diffusion behavior of the drug molecule inside the COF pore was simulated using a ten-layer COF. Based on the mean square displacement analysis, the diffusion coefficients of DOX and IRI within the COF pore were calculated to be 108 and 97 um2/s, respectively. This computational study sheds light on how different types of interactions between the drug molecule and COF affect the adsorption and diffusion process. Our findings validated that the porphyrin-based COF-366 can serve as a nanobased platform for delivering DOX and IRI.
Collapse
Affiliation(s)
- Mohsen Soroushmanesh
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Hossein Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
2
|
Sajid H. Effect of interlayer slipping on the geometric, thermal and adsorption properties of 2D covalent organic frameworks: a comprehensive review based on computational modelling studies. Phys Chem Chem Phys 2024; 26:8577-8603. [PMID: 38421236 DOI: 10.1039/d4cp00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Two-dimensional covalent organic frameworks (2D-COFs) are a class of crystalline porous organic polymers, consisting of 2D-planar sheets stacked together perpendicularly via noncovalent forces. Since their discovery, 2D-COFs have attracted extensive attention for optoelectronic and adsorption applications. Owing to the layer stacking nature of 2D COFs, various new slipped structures that are energetically favourable can be designed. These interlayer slipped structures are actively responsible for tuning (mostly enhancing) the optoelectronic properties, thermal properties, and mechanical strength of 2D COFs. This review summarizes the effect of interlayer slipping on the energetic stability, electronic behaviour and gas adsorption properties of 2D layered COFs, which is explained through computational modelling simulations. Since computational modelling offers a deep insight into electronic behaviour at the atomic scale, which is potentially impossible through experimental techniques, the introduction and role of computational techniques in such studies have also been described.
Collapse
Affiliation(s)
- Hasnain Sajid
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| |
Collapse
|
3
|
Singh N, Kim J, Kim J, Lee K, Zunbul Z, Lee I, Kim E, Chi SG, Kim JS. Covalent organic framework nanomedicines: Biocompatibility for advanced nanocarriers and cancer theranostics applications. Bioact Mater 2023; 21:358-380. [PMID: 36185736 PMCID: PMC9483748 DOI: 10.1016/j.bioactmat.2022.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Nanomedicines for drug delivery and imaging-guided cancer therapy is a rapidly growing research area. The unique properties of nanomedicines have a massive potential in solving longstanding challenges of existing cancer drugs, such as poor localization at the tumor site, high drug doses and toxicity, recurrence, and poor immune response. However, inadequate biocompatibility restricts their potential in clinical translation. Therefore, advanced nanomaterials with high biocompatibility and enhanced therapeutic efficiency are highly desired to fast-track the clinical translation of nanomedicines. Intrinsic properties of nanoscale covalent organic frameworks (nCOFs), such as suitable size, modular pore geometry and porosity, and straightforward post-synthetic modification via simple organic transformations, make them incredibly attractive for future nanomedicines. The ability of COFs to disintegrate in a slightly acidic tumor microenvironment also gives them a competitive advantage in targeted delivery. This review summarizes recently published applications of COFs in drug delivery, photo-immuno therapy, sonodynamic therapy, photothermal therapy, chemotherapy, pyroptosis, and combination therapy. Herein we mainly focused on modifications of COFs to enhance their biocompatibility, efficacy and potential clinical translation. This review will provide the fundamental knowledge in designing biocompatible nCOFs-based nanomedicines and will help in the rapid development of cancer drug carriers and theranostics.
Collapse
Affiliation(s)
- Nem Singh
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jungryun Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Kyungwoo Lee
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Zehra Zunbul
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Injun Lee
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Eunji Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Sung-Gil Chi
- Department of Life Science, Korea University, Seoul, 02841, South Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
4
|
Liu W, Ma X, Kheyr SM, Dong A, Zhang J. Covalent Organic Frameworks as Nanocarriers for Improved Delivery of Chemotherapeutic Agents. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7215. [PMID: 36295281 PMCID: PMC9611971 DOI: 10.3390/ma15207215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Cancer has become one of the main causes of death worldwide. Chemotherapy as one of the main therapy modalities is very unsatisfactory. The various nanocarriers have brought new opportunities for effective tumor treatment. However, most of the current nanocarriers still suffer from low efficiency and confront significant challenges in overcoming multiple biological barriers. Compared with conventional nanocarriers, covalent organic frameworks (COFs) with unique and attractive features exhibited great potential to serve as a promising platform for anticancer drug delivery. In this review, we first summarize the strategies and challenges of nanocarriers for cancer chemotherapy and then highlight the recent advances in COF-based nanocarriers for improved delivery of chemotherapeutic agents. Finally, the challenges remaining for COF-based nanocarriers for clinical applications are outlined.
Collapse
Affiliation(s)
- Weiming Liu
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xinyu Ma
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Shuayb Mohamed Kheyr
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Anjie Dong
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jianhua Zhang
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
5
|
Guo H, Liu Y, Wu N, Sun L, Yang W. Covalent Organic Frameworks (COFs): A Necessary Choice For Drug Delivery. ChemistrySelect 2022. [DOI: 10.1002/slct.202202538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao Guo
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| | - Yinsheng Liu
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| | - Ning Wu
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| | - Lei Sun
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| | - Wu Yang
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| |
Collapse
|
6
|
Ghadari R, Mohsenzadeh E. Effect of COF Presence on DNA Molecular Interactions: A QM/MM and MD Simulations Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rahim Ghadari
- Computational Chemistry Laboratory Department of Organic and Biochemistry Faculty of Chemistry University of Tabriz Tabriz Iran, P.O. 5166616471
| | - Enayat Mohsenzadeh
- Computational Chemistry Laboratory Department of Organic and Biochemistry Faculty of Chemistry University of Tabriz Tabriz Iran, P.O. 5166616471
| |
Collapse
|
7
|
Valenzuela C, Chen C, Sun M, Ye Z, Zhang J. Strategies and applications of covalent organic frameworks as promising nanoplatforms in cancer therapy. J Mater Chem B 2021; 9:3450-3483. [PMID: 33909746 DOI: 10.1039/d1tb00041a] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer nanomedicine is the best option to face the limits of conventional chemotherapy and phototherapy methods, and thus the intensive quest for new nanomaterials to improve therapeutic efficacy and safety is still underway. Owing to their low density, well-defined structures, large surface area, finely tunable pore size, and metal ion free features, covalent organic frameworks (COFs) have been extensively studied in many research fields. The recent great interest in nanoscale COFs to improve the properties of bulk COFs has led to broadening of their applicability in the biomedical field, such as nanocarriers with an outstanding loading capacity and efficient delivery of therapeutic agents, smart theranostic nanoplatforms with excellent stability, high ROS generation, light-to-heat conversion capabilities, and different response and diagnostic characteristics. The COFs and related nanoplatforms with a wide variety of designability and functionalization have opened up a new avenue for exciting opportunities in cancer therapy. Herein we review the state-of-the-art technical and scientific developments in this emerging field, focusing on the overall progress addressed so far in building versatile COF-based nanoplatforms to enhance chemotherapy, photodynamic/photothermal therapy, and combination. Future perspectives for achieving the synergistic effect of cancer elimination and clinical translation are further discussed to motivate future contributions and explore new possibilities.
Collapse
Affiliation(s)
- Cristian Valenzuela
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Chu Chen
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Mengxiao Sun
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhanpeng Ye
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China. and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|