1
|
Song X, Zhang H, Jin D, Huang S, Sun J, Xu J. Solvent Vapor/Gas-Induced Guest Transport and Exchange of a Nonporous Organic Crystal to Construct Smart Host-Guest Energetic Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52264-52276. [PMID: 39358898 DOI: 10.1021/acsami.4c10299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Supramolecular materials with advanced properties constructed by intermolecular interactions have attracted extensive attention in many fields, such as sensing, catalysis, and biomedicine. However, in the field of energetic materials, limited by the tight-packed crystal structure of explosives and the strong intermolecular interaction forces, most supramolecular explosives can only be obtained in organic solution or under extreme external loading (high temperature/high pressure). Given the practical issues such as safety risks, operational difficulties, serious environmental pollution, and large-scale production of the existing technology, a new method of constructing host-guest explosives by solvent vapor/gas induction is proposed. This gas-solid reaction method takes advantage of the metastable properties from the explosives solvate (HNIW/ACN), and cleverly opens a fast channel for gas molecules to enter the explosives cell cavities, which results in the highly efficient preparation of the host-guest explosives (HNIW/CO2 and HNIW/N2O). The embedding of functional gas molecules greatly improves the structural stability and comprehensive performance of the explosive skeleton, and the detonation velocity of HNIW/N2O even reaches 9802 m·s-1, which is higher than that of ε-HNIW (9455 m·s-1). In addition, compared with ε-HNIW, HNIW/CO2 and HNIW/N2O exhibit high energy but low sensitivity, enhanced thermal stability, and combustion properties, which present a potential prospect in the field of energetic materials. The new method effectively overcomes the high-energy barrier of nonporous organic explosives, offering the advantages of simplicity, safety, efficiency, and environmental friendliness. This study provides a valuable pathway for constructing advanced supramolecular energetic materials, which contributes to the enrichment of supramolecular engineering systems.
Collapse
Affiliation(s)
- Xiaomin Song
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621900, China
| | - Haobin Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621900, China
| | - Dengyu Jin
- Xi'an North Hui'an Chemical Industry Co., Ltd., Xi'an 710302, China
| | - Shiliang Huang
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621900, China
| | - Jie Sun
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621900, China
| | - Jinjiang Xu
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621900, China
| |
Collapse
|
2
|
Li XY, Wang BG, Chen YF, Fu JB, Du JH, Wang CG. Molecular dynamics simulation of DNAN/DNB cocrystal PBXs. J Mol Model 2024; 30:303. [PMID: 39115702 DOI: 10.1007/s00894-024-06096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024]
Abstract
CONTEXT The DNAN/DNB eutectic is a high-energy explosive eutectic with superior safety and thermal stability compared to traditional melt-cast explosives. However, the addition of polymer binders can effectively enhance its mechanical properties, allowing for continued production demands without the need for changes to existing factory equipment. In this paper, a model of the DNAN/DNB eutectic explosive was established, and five different types of polymers-cis-1,4-polybutadiene (BR), ethylene-vinyl acetate copolymer (EVA), polyethylene glycol (PEG), fluorinated polymer (F2603), and polyvinylidene fluoride (PVDF)-were added to the (1 0 - 1), (1 0 1), and (0 1 1) cleavage planes, respectively, to form polymer-bonded explosives (PBXs). The stability, trigger bond length, mechanical properties, and detonation performance of the various polymer-bound PBXs were predicted retrogressively. Among the five PBX models, the DNAN/DNB/PEG model exhibited the highest binding energy and the shortest trigger bond length, indicating a significant improvement in stability, compatibility, and sensitivity compared to the original eutectic. Additionally, although the detonation performance of DNAN/DNB decreased after the addition of binders, the final results were still satisfactory. Overall, the DNAN/DNB/PEG model demonstrated excellent comprehensive performance, proving that among the many polymer binders, PEG is the optimal choice for DNAN/DNB. METHODS Within the Materials Studio software, molecular dynamics (MD) simulations were employed to predict the properties of the DNAN/DNB eutectic PBX. The MD simulation timestep was set to 1 fs, with a cumulative simulation duration of 2 ns. A 2 ns MD simulation was conducted using the isothermal-isobaric ensemble (NPT). The COMPASS force field was applied, and the temperature was fixed at 295 K.
Collapse
Affiliation(s)
- Xin-Yi Li
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Bao-Guo Wang
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China.
| | - Ya-Fang Chen
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Jian-Bo Fu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ji-Hang Du
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Chun-Guang Wang
- Shanxi Jiangyang Chemical Limited Company, Taiyuan, 030041, Shanxi, China
| |
Collapse
|
3
|
Han J, Yang Y, Hou Y, Tang M, Zhang Y, Zhu Y, Liu X, Wang J, Gao Y. Insight into Formation, Synchronized Release and Stability of Co-Amorphous Curcumin-Piperine by Integrating Experimental-Modeling Techniques. J Pharm Sci 2024; 113:1874-1884. [PMID: 38354909 DOI: 10.1016/j.xphs.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Intermolecular interactions between drug and co-former are crucial in the formation, release and physical stability of co-amorphous system. However, the interactions remain difficult to investigate with only experimental tools. In this study, intermolecular interactions of co-amorphous curcumin-piperine (i.e., CUR-PIP CM) during formation, dissolution and storage were explored by integrating experimental and modeling techniques. The formed CUR-PIP CM exhibited the strong hydrogen bond interaction between the phenolic OH group of CUR and the CO group of PIP as confirmed by FTIR, ss 13C NMR and molecular dynamics (MD) simulation. In comparison to crystalline CUR, crystalline PIP and their physical mixture, CUR-PIP CM performed significantly increased dissolution accompanied by the synchronized release of CUR and PIP, which arose from the greater interaction energy of H2O-CUR molecules and H2O-PIP molecules than CUR-PIP molecules, breaking the hydrogen bond between CUR and PIP molecules, and then causing a pair-wise solvation of CUR-PIP CM at the molecular level. Furthermore, the stronger intermolecular interaction between CUR and PIP was revealed by higher binding energy of CUR-PIP molecules, which contributed to the excellent physical stability of CUR-PIP CM over amorphous CUR or PIP. The study provides a unique insight into the formation, release and stability of co-amorphous system from MD perspective. Meanwhile, this integrated technique can be used as a practical methodology for the future design of co-amorphous formulations.
Collapse
Affiliation(s)
- Jiawei Han
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Yang Yang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yunjuan Hou
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Mengyuan Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yunran Zhang
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Yijun Zhu
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Xiaoqian Liu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Jue Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
4
|
Mao JS, Wang BG, Chen YF, Fu JB, Tian X, Ye BY. Molecular dynamics simulation of CL20/DNDAP cocrystal-based PBXs. J Mol Model 2023; 29:199. [PMID: 37269375 DOI: 10.1007/s00894-023-05605-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
CONTEXT CL-20/DNDAP cocrystal is a promising new type of explosive with exceptional energy density and detonation parameters. However, compared to TATB, FOX-7 and other insensitive explosives, it still has higher sensitivity. In order to decrease the sensitivity of CL20/DNDAP cocrystal explosive, in this article, a CL20/DNDAP cocrystal model was established, and six different types of polymers, including butadiene rubber (BR), ethylene-vinyl acetate copolymer (EVA), polyethylene glycol (PEG), hydroxyl-terminated polybutadiene (HTPB), fluoropolymer (F2603), and polyvinylidene difluoride (PVDF), were added to the three cleaved surfaces of (1 0 0), (0 1 0) and (0 0 1) to obtain polymer-bonded explosives (PBXs). Predict the effects of different polymers on the stability, trigger bond length, mechanical properties, and detonation performance of PBXs. Among the six PBX models, CL-20/DNDAP/PEG model exhibited the highest binding energy and the lowest trigger bond length, indicating that CL-20/DNDAP/PEG model had the best stability, compatibility, and the least sensitivity. Furthermore, although the CL-20/DNDAP/F2603 model demonstrated superior detonation capabilities, it should be noted that this model displayed low levels of compatibility. Overall, CL-20/DNDAP/PEG model exhibited the superior comprehensive properties, thereby demonstrating that PEG is a more suitable binder option for PBXs based on the CL20/DNDAP cocrystal. METHODS The properties of CL-20/DNDAP cocrystal-based PBXs were predicted by molecular dynamics (MD) method under Materials Studio software. The MD simulation time step was set at 1fs and the total MD simulation time was 2ns. The Isothermal-isobaric (NPT) ensemble was used for the 2ns of MD simulation. The COMPASS force field was used, and the temperature was set at 295K.
Collapse
Affiliation(s)
- Jian-Sen Mao
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Bao-Guo Wang
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China.
| | - Ya-Fang Chen
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Jian-Bo Fu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xing Tian
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Bao-Yun Ye
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| |
Collapse
|
5
|
Theoretical research on performances of CL-20/HMX cocrystal explosive and its based polymer bonded explosives (PBXs) by molecular dynamics method. J Mol Model 2022; 28:385. [DOI: 10.1007/s00894-022-05380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
|
6
|
Sultan M, Wu J, Haq IU, Imran M, Yang L, Wu J, Lu J, Chen L. Recent Progress on Synthesis, Characterization, and Performance of Energetic Cocrystals: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154775. [PMID: 35897950 PMCID: PMC9330407 DOI: 10.3390/molecules27154775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 01/15/2023]
Abstract
In the niche area of energetic materials, a balance between energy and safety is extremely important. To address this "energy-safety contradiction", energetic cocrystals have been introduced. The investigation of the synthesis methods, characteristics, and efficacy of energetic cocrystals is of the utmost importance for optimizing their design and development. This review covers (i) various synthesis methods for energetic cocrystals; (ii) discusses their characteristics such as structural properties, detonation performance, sensitivity analysis, thermal properties, and morphology mapping, along with other properties such as oxygen balance, solubility, and fluorescence; and (iii) performance with respect to energy contents (detonation velocity and pressure) and sensitivity. This is followed by concluding remarks together with future perspectives.
Collapse
Affiliation(s)
- Manzoor Sultan
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; (M.S.); (L.Y.); (J.W.); (J.L.); (L.C.)
- Department of Physics, The University of Lahore, Lahore 54000, Pakistan;
| | - Junying Wu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; (M.S.); (L.Y.); (J.W.); (J.L.); (L.C.)
- Correspondence: ; Tel.: +86-136-914-20206
| | - Ihtisham Ul Haq
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Muhammad Imran
- Department of Physics, The University of Lahore, Lahore 54000, Pakistan;
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lijun Yang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; (M.S.); (L.Y.); (J.W.); (J.L.); (L.C.)
| | - JiaoJiao Wu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; (M.S.); (L.Y.); (J.W.); (J.L.); (L.C.)
| | - Jianying Lu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; (M.S.); (L.Y.); (J.W.); (J.L.); (L.C.)
| | - Lang Chen
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; (M.S.); (L.Y.); (J.W.); (J.L.); (L.C.)
| |
Collapse
|
7
|
Han J, Li L, Yu Q, Zheng D, Song Y, Zhang J, Gao Y, Heng W, Qian S, Pang Z. Self-gelation involved in the transformation of resveratrol and piperine from a co-amorphous system into a co-crystal system. CrystEngComm 2022. [DOI: 10.1039/d2ce00671e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-gelation of co-amorphous system promotes the transformation into its co-crystal system during dissolution.
Collapse
Affiliation(s)
- Jiawei Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
- School of Pharmacy, Changzhou University, Changzhou, 213164, P.R. China
| | - Luyuan Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Qian Yu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Daoyi Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Yutong Song
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| |
Collapse
|